Transverse Waves

- For transverse waves the displacement of the medium is perpendicular to the direction of propagation of the wave

Longitudinal Waves

- In longitudinal waves the displacement of the medium is parallel to the propagation of the wave.

A single frequency traveling wave

The frequency

- The frequency f is the number waves passing a point per second and is determined by the source of the waves.
- in $1 /$ seconds or Hertz (Hz)

The period

- The period T is the time between successive wave crests, or the inverse of the frequency
- in seconds/cycle $T=1 / f$ The velocity
- The velocity v of a wave is the speed at which a wave peak travels.
The wavelength
- The wavelength λ of a periodic wave is the distance between successive wave peaks.

The amplitude

- the amplitude A is the maximum magnitude of the displacement;
- the displacement of a periodic wave varies back and forth between A and -A.

The velocity of the wave v is the distance travelled divided by the time.

$$
v=\lambda / T \quad v=f \lambda
$$

The effects of boundaries

Reflection of waves Law of Reflection

 „angle of incidence equals angle of reflection"
The standing wave

Refraction of Waves

- Refraction is the bending of waves when they enter a medium where their speed is different.

Diffraction of the Waves

- Diffraction: the bending of waves around small* obstacles and the spreading out of waves beyond small* openings.
* small compared to the wavelength

Harmonics

For the nth harmonic the wavelengths can be calculated from

$$
\lambda_{n}=\frac{2 l}{n} \quad \text { Where } \mathrm{n}=1,2,3, \ldots(\mathrm{fixed} \text { end string })
$$

The corresponding frequencies are found from
$c=f_{n} \lambda_{n}$
Where c is the wave velocity on the string
Thus on a string of length ℓ

$$
f_{n}=\frac{n}{2 l} c \quad \text { Where } \mathrm{n}=1,2,3, \ldots(\text { fixed end string })
$$

Example 1

What is the wavelength of the sound wave with a frequency of 1000 Hz and a velocity $344 \mathrm{~m} / \mathrm{s}$?

Example 2

What is the frequency of a wave of velocity $200 \mathrm{~m} / \mathrm{s}$ and wavelength 0.5 m ?

Example 3

What are the frequencies of the first three harmonics of the longest string in a grand piano? The length is 1.98 m , and the velocity of the wave on the string is $\mathrm{c}=130 \mathrm{~m} / \mathrm{s}$.

