Transverse Waves

 For transverse waves the displacement of the medium is perpendicular to the direction of propagation of the wave

Longitudinal Waves

 In longitudinal waves the displacement of the medium is parallel to the propagation of the wave.

A single frequency traveling wave

The frequency

- The *frequency f* is the number waves passing a point per second and is determined by the source of the waves.
- in 1/seconds or Hertz (Hz)

The period

- The *period T* is the time between successive wave crests, or the inverse of the frequency
- in seconds/cycle $T = \frac{1}{f}$ The *velocity*
- The *velocity v* of a wave is the speed at which a wave peak travels.

The wavelength

• The wavelength λ of a periodic wave is the distance between successive wave peaks.

The amplitude

 the amplitude A is the maximum magnitude of the displacement;

the displacement of a periodic wave varies back and

forth between A and -A.

The velocity of the wave v is the distance travelled divided by the time.

$$v = \frac{\lambda}{T}$$
 $v = f\lambda$

The effects of boundaries

Reflection of waves Law of Reflection

"angle of incidence equals angle of reflection"

The standing wave

Refraction of Waves

 Refraction is the bending of waves when they enter a medium where their speed is different.

Diffraction of the Waves

- Diffraction: the bending of waves around small* obstacles and the spreading out of waves beyond small* openings.
- * small compared to the wavelength

Harmonics

For the *n*th harmonic the wavelengths can be calculated from

$$\lambda_n = \frac{2l}{n}$$
 Where n = 1, 2, 3,...(fixed end string)

The corresponding frequencies are found from

$$c=f_n\lambda_n$$
 Where c is the wave velocity on the string

Thus on a string of length ℓ

$$f_n = \frac{n}{2l}c$$
 Where n = 1, 2, 3,...(fixed end string)

Example 1

What is the wavelength of the sound wave with a frequency of 1000 Hz and a velocity 344 m/s?

Example 2

What is the frequency of a wave of velocity 200 m/s and wavelength 0.5 m?

Example 3

What are the frequencies of the first three harmonics of the longest string in a grand piano? The length is 1.98 m, and the velocity of the wave on the string is c = 130 m/s.