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Abstract: Voice prosthesis implantation with the creation of a tracheoesophageal fistula is the gold
standard procedure for voice rehabilitation in patients after a total laryngectomy. All patients
implanted with a voice prosthesis (VP) have biofilms of fungi and bacteria grow on their surface.
Biofilm colonization is one of the main reasons for VP degradation that can lead to VP dysfunction,
which increases the high risk of pneumonia. In a 20-month evaluation period, 129 cases of prostheses
after replacement procedures were investigated. Microbiological examination of the biofilms revealed
that there were four of the most common fungi species (Candida spp.) and a large variety of bacterial
species present. We studied the relationship between the time of proper function of Provox VP,
the microorganism composition of the biofilm present on it, and the degradation level of the silicone
material. Evaluation of the surface of the removed VP using an atomic force microscope (AFM)
has demonstrated that biofilm growth might drastically change the silicone’s mechanical properties.
Changes in silicone stiffness and thermal properties might contribute to the failure of VP function.
Our data can serve in future studies for the development of methods to prevent or inhibit biofilm
formation on the VP surface that would translate to an increase in their durability and safety.
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1. Introduction

In 2018, worldwide laryngeal cancer was diagnosed in 177,422 patients, and there were 94,771
deaths caused by it [1]. Total laryngectomy (TL) is a method of choice in the treatment of the
advanced stages of laryngeal cancer (≥T3 in the TNM8 staging system) and as salvage treatment
in the case of recurrence after primary organ preservation treatment. As a result of TL, a patient
loses the physiological ability of speech and may experience social hardship. Vocal rehabilitation
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is essential to improve their quality of life [2]. The most effective method of voice rehabilitation
among postlaryngectomy patients is tracheoesophageal (TE) puncture with voice prosthesis (VP)
implantation [3]. The pioneer of this method was Polish professor Erwin Mozolewski, who published
his results in 1972 [4]. Then in 1980, Singer and Blom developed a VP made of medical-grade silicone [5].
The indwelling low-resistance Provox voice prosthesis, developed in the Netherlands Cancer Institute
in 1988, and the Blom–Singer VP are the most commonly used ones nowadays [6,7]. They both have a
similar voice quality and lifetime [8]. The function of the TE fistula is to restore the connection between
the airways (trachea) and the upper parts of the gastrointestinal tract (esophagus, pharynx, oral cavity)
that has been lost due to TL. The mechanism of the implanted VP is that of a one-way valve to allow
airflow from the trachea to the esophagus and to prevent esophageal content (mainly fluids) from
leaking into the trachea (Figure 1).
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Figure 1. Schematic representation showing the location of implanted voice prosthesis (VP).
The tracheoesophageal fistula is typically located on the posterior wall of the trachea, about 5 mm
under the upper edge of the tracheostoma. There is a tightly placed VP inside the fistula that acts as a
one-way valve.

The most serious disadvantage of silicone polymer-based voice prosthesis and other medical
devices is their colonization by fungi and bacteria [9–11]. The main yeast strains isolated from
the biofilms present on dysfunctional devices are Candida albicans, Candida glabrata, Candida krusei,
and Candida tropicalis. On the VP surface, Candida spp. form a tridimensional network leading to
prosthesis malfunction [12,13]. Candida albicans cells in the biofilm structure express the surface
adhesion molecules Eap1 and Als3, which serve as specific surface receptors responsible for bacterial
binding, including the viridans (oralis) groups Streptococci and Staphylococcus aureus [14,15]. In effect,
mixed species bacteriofungal biofilm is the most common type of biofilm that develops on the silicone
used to produce medical devices. The adherence of Candida species hyphae is crucial to initiating
biofilm formation. The penetration of the yeast filaments is facilitated by the enzymatic degradation of
silicone. The process of enzymatic silicone degradation might supply nutrients for growing yeast [12,16].
Moreover, free radicals (superoxide anion O2−) and extracellular enzymes released by monocytes
and neutrophils (nicotinamide adenine dinucleotide phosphate oxidase (NADPH)) are also involved
in the process of silicone damage [17]. Another reaction leading to silicone polymer degradation is
oxidation caused by hydrogen peroxidase [18]. Candida albicans has 30 genes in which mutations could
decrease adherence of hyphae. In addition to their genetic profile, the surface topography and host
immunology are important factors controlling Candida albicans adherence [19,20]. Immune-competent
cells present on the VP surface increase their migration upon activation by biofilm components [21].
However, the microorganisms residing within the biofilm structure are resistant to the host immune
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response and exogenous antimicrobial agents, mostly because they are protected by the biofilm’s
extracellular matrix (ECM) [22]. Unlike the silicone polymer, the surrounding tissue is more susceptible
to damage by immune cells. In some cases, voice prosthesis dysfunction is not only associated with
valve blockage, but also with the destruction and deformation of the entire prosthesis and fistula
inflammation. Fungal biofilms on medical devices are a reservoir of pathogens that can potentially
lead to local or systemic infections [7,23]. However, in the context of VP, it is worth noting that except
for local inflammatory reactions of tracheoesophageal fistula, there is no evidence to date of serious
life-threatening infection caused directly by colonized microorganisms. On the other hand, it appears
that the process of biofilm growth is the main reason for VP damage and deformation, which leads
to its dysfunction. Central and lateral leakage of fluids by the tracheoesophageal fistula is the most
common and potentially life-threatening dysfunction. It might lead to aspiration pneumonia [24–26].
The average lifetime of a single Provox voice prosthesis is about 4–6 months, but there are individual
variations of the time of exploitation [27]. Factors influencing the time of voice prosthesis degradation
are primary or postoperative irradiation for the head and neck region, as well as diet. Some studies
have proven that consuming large quantities of dairy products has a significant effect on the extension
of VP exploitation time [28].

Some attempts to elongate VP lifespan by reducing biofilm development include the use of
nystatin, antimicrobial agents, oral wash, and to clean the VP by special brush. All have pros and cons
but are still not fully satisfactory [29,30]. Looking for methods that will prevent initial adherence of
hyphae (an essential step in biofilm formation) should be considered essential in the development of
future VP material.

This study has been conducted in part as a prospective cohort study and retrospective clinical
study describing biofilms on Provox VPs removed from patients. We have identified four of the
most common Candida species and a few groups of bacteria that should be considered as typical
steps of VP colonization. Additionally, using scanning electron microscope (SEM) and atomic force
microscope (AFM) analyses, we have characterized VP surface material damage caused by biofilm
growth. Information on the qualitative composition of “microorganism inhabitants“ on VP and
characteristics of the damage of the material that can be caused by biofilm growth provide a platform
for further studies to develop new means to extend the time of VP exploitation and increase the safety
of VP users after cancer treatment.

2. Results

2.1. Assessment of Microorganism Species Growing in Collected Biofilm Samples

On examined voice prostheses, we identified 13 different species of fungi (Table 1). The most
common were Candida krusei (identified on 55.8% of 129 VPs), Candida albicans (46.5%), Candida glabrata
(42.6%), Candida tropicalis (18.6%), and Saccharomyces cerevisiae (6.2%). We observed that there is no
statistically significant difference between the occurrences of certain fungal species in each group
(Table 1). Groups of patients were classified by the time of VP proper function, and they are fully
characterized in Section 4.2. There is no relationship between fungal species growth and time of voice
prosthesis exploitation.

There were many different species of bacteria identified on VPs from each group, and, for this
study, most of them were included in three categories, as indicated in Table 2. Pseudomonas aeruginosa
and Staphylococcus aureus have not been assigned to any of those categories and are shown separately,
considering their high potential to cause local (tracheoesophageal fistula) or general (pneumonia)
infections. The most common bacterial species was Staphylococcus aureus (44.2%). The second most
commonly identified species were members that belong to a group of physiological oropharyngeal
microbiota (32.6%). We have observed that there is no statistically significant difference between the
prevalence of certain bacteria species in each group (Table 3).
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Table 1. Yeast species identified on collected VP in relation to the total number of VP. (a) Statistically
analyzed occurrence of the five most common species identified on collected voice prostheses in each
group and in total (Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Saccharomyces
cerevisiae). (b) Other yeast species that were identified occasionally. Groups of patients were classified
by the time of VP proper function, and they are fully characterized in Section 4.2.

(a)

Species/Group of
the Prostheses

Group 1 (n
= 7) n (%)

Group 2 (n
= 24) n (%)

Group 3 (n
= 32) n (%)

Group 4 (n
= 49) n (%)

Group 5 (n
= 17) n (%)

Total (n =
129) n (%) p = Value

Candida krusei 3 (2.3) 13 (10.1) 16 (12.4) 28 (21.7) 12 (9.3) 72 (55.8) p = 0.648 *
Candida albicans 3 (2.3) 11 (8.5) 16 (12.4) 24 (18.6) 6 (4.7) 60 (46.5) p = 0.882 *
Candida glabrata 4 (3.1) 9 (7.0) 11 (8.5) 20 (15.5) 11 (8.5) 55 (42.6) p = 0.268 *
Candida tropicalis 2 (1.55) 4 (3.1) 7 (5.4) 9 (7.0) 2 (1.55) 24 (18.6) p = 0.865 *

Saccharomyces
cerevisiae 0 (0.0) 1 (0.8) 1 (0.8) 5 (3.9) 1 (0.8) 8 (6.2) p = 0.581 *

* χ2 test; p > 0.05.

(b)
Species/Group of the

Prosthesis
Group 1 (n
= 7) n

Group 2 (n
= 24) n

Group 3 (n
= 32) n

Group 4 (n
= 49) n

Group 5 (n
= 17) n

Total (n =
129) n

Candida dubliniensis 0 0 1 0 0 1
Candida kefyr 0 1 1 2 0 4

Candida lusitaniae 1 0 0 0 0 1
Cryptococcus
neoformans 0 0 1 0 0 1

Candida norvegensis 0 0 1 2 0 1
Candida parapsilosis 0 1 0 1 0 2
Rhodotorula glutinis 0 0 2 1 1 4
Cryptococcus laurenti 0 0 0 1 0 1
No species identified 0 1 0 3 0 4

Table 2. Bacteria identified on VPs. When possible, each individual species was classified into wider
groups for the purpose of this study—see column no. 1 “Category” (Cat.).

Cat. Species Group 1
(n = 7) n

Group 2
(n = 24) n

Group 3
(n = 32) n

Group 4
(n = 49) n

Group 5
(n = 17) n

Total (n
= 129) n

I *

Citrobacter freundi 0 1 1 0 0 2
Enterobacter cloacae 0 0 1 0 0 1

Escherichia coli 0 1 3 2 3 9
Klebsiella oxytoca 0 1 0 4 1 6

Klebsiella pneumoniae 1 1 2 1 1 6
Morganella morganii 0 0 0 1 0 1

Proteus hauseri 0 0 0 0 1 1
Proteus mirabilis 0 0 2 3 2 7

Raoultella planticola 0 1 1 2 0 4
Serratia marcescens 0 2 3 1 0 6

II *
Streptococcus agalactiae 1 1 3 1 0 6
Streptococcus group C 0 0 1 0 0 1

III *

Streptococcus spp. 2 4 6 5 0 17
Streptococcus viridans 0 1 0 5 0 6

Enterococcus spp. 0 0 0 0 1 1
Staphylococcus coag. (−) 0 2 1 3 0 6

No
Cat. *

Pseudomonas aeruginosa 1 2 3 1 1 8
Staphylococcus aureus 3 11 16 23 4 57

* I—enterobacteria; II—β-hemolytic streptococci; III—physiological oropharyngeal microbiota; No
Cat.—not categorized.
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Table 3. An overview of the bacteria identified on the investigated voice prostheses. Statistical analysis
of the main groups of bacteria species in relation to all prostheses (1–5).

Species/Group of
the Prosthesis

Group 1
(n = 7) n

Group 2
(n = 24) n

Group 3
(n = 32) n

Group 4
(n = 49) n

Group 5
(n = 17) n

Total (n =
129) n p = Value

Staphylococcus aureus
3 (2.3) 11 (8.5) 16 (12.4) 23 (17.8) 4 (3.1) 57 (44.2) p = 0.439 *

Physiological oropharyngeal microbiota
2 (1.55) 13 (10.1) 10 (7.75) 14 (10.85) 3 (2.3) 42 (32.6) p = 0.131 *

Enterobacteria
1 (0.78) 6 (4.65) 12 (9.3) 14 (10.85) 6 (4.65) 39 (30.2) p = 0.675 *

Physiological oropharyngeal microbiota only
1 (0.78) 11 (8.5) 6 (4.65) 11 (8.5) 2 (1.55) 31 (24.0) p = 0.090 *

ß-hemolytic streptococci
1 (0.78) 1 (0.78) 4 (3.1) 1 (0.78) 0 (0.0) 7 (5.4) p = 0.166 *

Pseudomonas aeruginosa
1 (0.78) 2 (1.55) 3 (2.3) 1 (0.78) 1 (0.78) 8 (6.2) p = 0.527 *

* χ2 test; p > 0.05.

Our study shows that for the most part, we identified a mix of bacterial and fungal species on the
voice prostheses biofilms (83% of tested samples), but, in some cases, there were only bacteria (2.3%)
or only fungi (14.7%) (Table 4). The occurrence of the most common species of fungi and bacteria
categories identified on all voice prostheses is shown in Figure 2.

Table 4. An overview of the nature of biofilm present on the investigated voice prostheses. Statistical
analysis of the main groups of bacteria species identified in relation to all prostheses (1–5).

Type of
Biofilm

Occurrence of the Certain Type of Biofilm in Each Group (%)
Group 1 Group 2 Group 3 Group 4 Group 5 Total

mixed
(bacteria/fungi) 71.4 87.5 93.8 79.6 70.6 83.0

fungi 28.6 8.3 6.3 16.3 29.4 14.7
bacteria 0.0 4.2 0.0 4.1 0.0 2.3
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2.2. Microscopic Examination

To evaluate the effects of biofilm growth on the properties of the silicone surface, collected VPs
and attached biofilms were subjected to studies using SEM and a laser confocal microscope (CLSM).
Prostheses from all groups that were described based on exploration time (Table 5) were investigated.
The nature of surface changes was similar but more pronounced within Group 5. Figure 3 shows images
of one representative (from the 10 tested) biofilm that formed on a VP removed from a patient who
reported prosthesis dysfunction. Panels A and B represent morphological features of the esophageal
flange and the valve, respectively. Macroscopic examination of the tracheal and esophageal parts
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of the removed prostheses showed adherent biofilm deposits that could be held responsible for the
deterioration of the silicone rubber. Deposits of biofilm structures on both the valve and the internal ring
of the valve suspension were observed. The esophageal surfaces of the investigated prosthesis—the
esophageal flange, the valve flap, and the valve seating—were mostly covered by biofilm infestation.
Observed colonization patterns ranged from single scattered biofilm deposits to those that fully cover
the VP surface. Photos confirm that the flexible medical-grade silicone is especially prone to microbial
infestation by biofilms. Panels C and D present SEM images of the esophageal flange with biofilm
deposits. Detailed imaging of the adhered deposits revealed the characteristics of the biofilm on
the polymer surface. Stiff and compact bulges in the biofilm layers on the flange were observed.
Additionally, biofilm growth, with infiltration into silicone rubber, was observed. Panels E and F show
a microscopic view (CLSM microscope) of the esophageal flange with biofilm covers. Panel F shows a
3D topography image with height measurements of the biofilm layer. The stiff biofilm deposition was
observed to have a height of up to 0.5 mm. These dense and high biofilm deposits can impede valve
closure and lead to transprosthetic leakage of esophageal contents into the trachea.

Table 5. Number of tested voice prostheses categorized by the time of exploitation and the sex of the
patient. Abundance and characteristics of each group are listed in the table. Total number of collected
prostheses n = 129.

The Time of
Exploitation

Number of Prostheses
Tested n (%)

Number of Males
n (%)

Number of
Females n (%)

Total 129 (100) 116 (90) 13 (10)
<one month (Group 1) 7 (5) 6 (4.7) 1 (0.8)
1–3 months (Group 2) 24 (19) 21 (16.3) 3 (2.3)
4–6 months (Group 3) 31 (25) 28 (21.8) 4 (3.1)
7–12 months (Group 4) 49 (38) 47 (36.4) 2 (1.6)
>12 months (Group 5) 17 (13) 14 (10.9) 3 (2.3)
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Figure 3. Macroscopic and microscopic views of the used silicone voice prosthesis from one
representative VP collected from a patient from Group 5. Panels (A,B) show a general view of
the used representative prosthesis, investigated using microscopic methods, with biofilm formations
on the esophageal and tracheal flange surfaces and the prosthesis’ valve. Panels (C,D) show examples
of the microscopic topography (SEM) from the representative prosthesis’ polymeric surfaces, showing
biofilm formations. Panels (E,F) show the microscopic topography characterization (CLM microscope)
of polymeric surfaces with biofilm formations, with 3D height visualization (white arrows show
biofilm formations).
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Figure 4 shows the AFM morphology of biofilm deposited on the silicone surface. Panels A and
B present the control—clear surfaces with remnants from manufacturing processes such as injection
die molding. Panels C–F show biofilm structures. Detailed imaging of the adhered deposits revealed
biofilm composition on the polymer surfaces.
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Figure 4. Microscopic (AFM) nanoscale views of the biofilm formed on the representative silicone voice
prosthesis. Panels (A,B) show the topography of the control samples. Panels (C–F) show the polymer
morphology, with formed biofilms where fungi or bacteria dominate. All images are representative of
10 different VPs removed from who reported prosthesis dysfunction and were included in Group 5
(n = 10).

Figure 5 shows examples of silicone deterioration revealed after biofilm removal from the
representative VP from the fifth time-group (n = 10). Panels A and B show control sample surfaces with
remnants from the manufacturing process. Panels C–F show the topography of the silicone surface
after biofilm removal using sonification. The interaction between tissue, material, and the development
of biofilm might account for all material damage. Confocal microscopy revealed the porosity (blue
arrows) of the silicone surface (Panels C and D). Microcracks (yellow arrows) were also visible using
AFM (Panels E and F).

Changes in the mechanical and thermal properties of the representative VP from the fifth group
(n = 10) after biofilm removal are shown in Figure 6. Panel A indicates that the structures of the evenly
developed biofilm are much less stiff than flexible medical silicone. Panel B shows the changes in
Young’s modulus of the silicone. The biofilm–silicone interaction might result in a significant increase
in polymer stiffness. The mean value of Young’s modulus of the control silicone was 780 kPa, while for
the used silicone, it was 1800 kPa. Changes in the thermal parameters of the polymer, denoting
internal changes in the structure, were also observed. Panels C and D show changes in the crystallinity
and activation energy of the silicone prostheses. Mean values of crystallinity and activation energy
of used VPs are higher compared to new VPs, but the differences between averages did not reach
statistical significance. These changes were not as significant as in the case of Young’s modulus but
determined a certain upward trend, and we can associate these changes with silicone mechanical
changes. We observed not only the shape deformation of the prostheses, surface porosity, microcracks,
and valve obstruction but also structural changes and degeneration.
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Figure 5. Polymer surface damage, visible after biofilm removal. Panels (A,B) show a picture and
3D topography of the control sample surfaces. Panels (C,D) show silicone surface porosity from the
representative used prosthesis (blue arrows) as a result of interaction between tissue and silicone and
biofilm action. Panels (E,F) show microcracks (yellow arrows) in the silicone surfaces. Panels (A–D) are
from the CLM microscope; panels (E,F) are from the AFM microscope. All images are representative of
10 different VPs removed from patients who reported prosthesis dysfunction and were included in
Group 5 (n = 10).
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Figure 6. Mechanical and thermal properties of biofilm and silicone from representative VPs belonging
to the fifth time-group. Panel (A) shows biofilm stiffness on the silicone surface compared to the clean
material. Panel (B) shows changes in silicone surface stiffness after biofilm removal. Panels (C,D) show
changes in the thermal properties of silicones under biofilm influence: changes in silicone crystallinity
and silicone activation energy, respectively (n = 10, * p ≤ 0.05) were considered to be statistically
significant; *** p ≤ 0.001; N.S.S.—not statistically significant).
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3. Discussion

3.1. Analysis of the Study Group

The incidence of laryngeal cancer has a male-to-female ratio of 5:1 [31]. The higher ratio in
our study (9:1) could be caused by the fact that the men were diagnosed at more advanced stages,
by which time, the organ preservation treatment is not possible. Most of our patients had simultaneous
implantation of voice prosthesis at the time of laryngectomy. The rest of them had undergone secondary
implantation procedures similar to those in another study [32].

There is a variety of data published about VP lifespan. Some authors assessed that the average
time of Provox Vega exploitation ranges from 3.5–18 months [27,28]. The average and median number
of replacements per year is smaller than in another study, where the results were an average of 2.2
replacements and a median of 4.1 replacements per year [33]. There is a difference between our study
and similar research, where patients were also categorized based on the period of exploitation. In the
mentioned study, the most numerous group was the group of 4–6 months exploitation [32]. In our
study, the longest time was 61 months. In this extreme case, the prosthesis was visibly covered by
biofilm and was deformed, but it was still functioning well without any leakage. All analyzed patients
did not have any symptoms of local or systemic infection. Moreover, none of our patients suffered
from aspiration pneumonia. This observation agrees with previous reporting [32].

3.2. Assessment of Microorganism Species Growing in Collected Biofilm Samples

The variety of microorganisms identified during our study was large. The most common yeast
identified on VPs were Candida species. Our results are similar to the results of other authors,
but in our studies, the dominant species was Candida krusei instead of the previously reported
Candida albicans [11,33]. In our study, similar to other publications, the most common bacterial species
forming biofilms on VPs was Staphylococcus aureus [11,33]. Colonization of Candida spp. is highly
associated with the destruction of the silicone material [16]. The biofilm growth, especially when
taking place on the valve, can shorten the device’s lifetime. A biofilm containing a mixed flora of yeasts
and bacteria, which we detect on the silicone surface, was similar to data reported in [11]. Interestingly,
within the biofilm mass, it was possible to identify areas with either mostly bacterial or fungal cells.
It has been suggested that initial adherence to the silicone polymer surface of Candida species can
be preceded by bacteria. Fungi might create a conditioning biofilm on the soft surface of silicone
prostheses. The presence of mixed microbial flora can be considered “a material coinfection”, with a
synergistic interplay between bacterial and fungal cells [16].

However, the results have shown that there are no statistically significant correlations between
the lifetime of voice prostheses and the microorganism composition of the biofilms that develop on
the VPs. No species, neither yeasts nor bacteria, changed the lifespan of the voice prosthesis with
statistical significance.

We found that the most common yeasts identified on the VP biofilm belonged to Candida spp.,
but our statistical analysis has shown that there is no relationship between each of the species of
Candida and the VP lifespan. We also found similar changes in the structural, thermal, and mechanical
properties of the silicone material of the VP. Therefore, we concluded the VP’s degradation time and
failure is not due to the presence of certain fungi or bacteria, but caused by the biofilm formation as a
process, no matter the microbial composition. We assume that the structures of the biofilm are the
decisive cause of valve nonclosure and the destruction of flanges through microcracks and material
deformation [11,34]. Changes in the physicochemical properties during the exploitation when biofilm
first develops on the VP surface may result from stress accumulation in some areas, leading to the
polymer cracking. Cracks and deformation can cause the leaking of fluids through the prosthesis and
failure of its function [11].
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3.3. Microscopic Examination

As reported in [16,35], the esophageal surfaces of the investigated prosthesis–the esophageal flange,
the valve flap, and the valve seating–were mostly covered by biofilm infestation. There were similar
structures, like stiff and compact bulges in the biofilm layers, on the flanges described in previous
studies [36–39] as we observed in our setting. Synthetic silicone is known to be rapidly colonized
by microorganisms [11]. We confirmed that some silicone properties favor microbial colonization,
and biofilm can cause the deterioration of polymer material. Prosthesis material can be not only
superficially damaged but also penetrated, and their 3D structure can be disrupted by microorganisms.
The deterioration of silicone surfaces is an interfacial process between the tissue–polymer surface and
the polymer–biofilm surface and is related to the conditions prevailing on these surfaces. Overall,
silicone deterioration in this setting can be considered a combination of biofilm formation [16],
lytic processes, and extraction of soluble material compounds by microbial cells, and their products
may lead to silicone embrittlement and structural damage [36]. Other studies suggest that the growth
of biofilm generates an initial deterioration and long-term internal changes of the silicone through
the adhesive forces of fungi and bacteria and the subsequent pressure increase, action of free radicals,
and extracellular enzymes. Additionally, the presence of the biofilm activates the immune system
and the production of proinflammatory molecules, which are involved in the mechanism of silicone
damage [11,21]. The observed increase in crystallinity and activation energy of thermal decomposition
of the polymers may indicate the effect of the biofilm on the length of polymer chains. Shortening of
the chains can lead to easier crystalline rearrangement inside. Increased leaching of additives and
monomers out of the polymer matrix, plasticizer degradation, and changes in crystallinity may all lead
to elasticity changes and the increased embrittlement of the silicone [40].

The new polymeric material should be improved to prevent deformation and cracking during
exploitation. A modification that will give us antimicrobial properties would also be highly desirable.
One possibility to achieve such a goal is the addition of antimicrobial nanosystems or chemical
compounds to polymers [41–46] that might reduce the ability of microorganisms to form and develop
biofilms on the prosthesis’ surface.

It is worth underlining that patients involved in this study did not develop any systemic infection
during the time the study was conducted. This observation suggests that microorganisms colonizing
the VP are very unlikely to become the direct etiological factor of infections. However, it seems they
lead to VP failure, which can cause leakage from the esophagus to the trachea, and it could be the
main reason for aspiration pneumonia. Some previous publications have indicated that patients with
a dysfunctional TE fistula had a three-fold higher risk of pneumonia than patients with the proper
function of VP and TE fistula [47].

Even though the different factors that might govern biofilm formation on the VP surface are not yet
defined, biofilm existence is a critical element from the perspective of the deterioration of VP silicone
rubber. Additionally, the biofilm itself does not seem to be a hazard for the patient directly, but the
consequences of voice prosthesis failure and dysfunction could lead to serious clinical complications.

4. Materials and Methods

4.1. Voice Prostheses Collection

We collected 187 dysfunctional Provox voice prostheses from 129 laryngectomized patients
admitted to the Department of Otolaryngology, Head and Neck Surgery, of the Holy-Cross Oncology
Centre in Kielce, Poland, over the span of 20 months. Some patients had replacement procedures more
than once during that period—there were 58 such cases, but these prostheses were not included in the
study. Before the replacement procedure, all patients were informed about the purpose and methods
of the study. All patients agreed to participate in the study. The bioethical committee approved
the study (Resolution of Bioethical Committee no. 16/2019). A physician, using sterile instruments,
did the replacement procedure and collected the prostheses, which were placed into sterile containers.
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Directly after removal from the patients’ tracheoesophageal fistula, dysfunctional voice prostheses
were subjected to microbiological evaluation. After the replacement procedure, patients answered
questions about their medical history. Then, the information collected from the patients was compared
with the data provided by the internal digital medical history system “CliniNet”. Correlations between
the groups of collected prostheses and occurrences of certain fungi or bacteria species were calculated
using the chi-square test of independence (variables such as the group of VP and the species of the
microorganism were set as qualitative variables).

4.2. Characteristics of the Study Group

Among all included patients, there were 116 males and 13 females. The male-to-female ratio was
9:1. The average age of patients was 66. The youngest patient was 47, and the oldest was 89. Patients
underwent total laryngectomy from 18 years to 3 months (average 7.1 years) before the replacement
procedure included in the study. Most of them (85%) had simultaneous implantation of voice prosthesis
at the time of laryngectomy. The rest of them had undergone a secondary implantation procedure.
In total, 88% of included patients had undergone radiation therapy: 73% as postoperative irradiation,
and 15% as primary radical radiotherapy. The average number of voice prosthesis replacements per
year in the studied patients after laryngectomy was 1.5 replacements (median 1.7), and the highest was
7 replacements. The average time between the previous replacement and the present replacement of
voice prosthesis for a patient was 8.2 months (median time: 7 months).

All patients and prostheses were categorized into five groups depending on the time of exploitation
(Table 5). The most abundant was Group 4 (7–12 months of exploitation), with 49 collected prostheses.
Group 1 (less than 1 month of exploitation) was the smallest in number (7 pcs of collected VPs;
Figure 7). All patients used indwelling Provox voice prostheses (Table 6). The cause of replacement
was categorized into two groups: device-related (63%) and fistula-related (37%). Device-related
problems were mainly leakage through the valve and obstruction of the prosthesis, leading to increased
airflow resistance during voicing. The fistula-related problems included leakage around the prosthesis,
hypertrophy, and infection of tissues around the trachea–esophageal fistula. Accidental loss of
prosthesis was not included in this study. In our study, there were no patients manifesting systemic
infection that had been diagnosed in the time between the previous and the studied replacement
procedures. Moreover, none of our patients had aspiration pneumonia during this time.
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Table 6. Type and size of collected voice prostheses. All collected voice prostheses were Provox.
There were different types (standard Provox Vega, standard Provox 2, and XS-extra seal) and sizes.
In the table are the presented numbers of each voice prosthesis by type and size.

Type of Voice Prosthesis Number of Prostheses Tested n (%)

Total 129 (100)
Provox Vega 119 (92)

4 mm 1
6 mm 30
8 mm 66

10 mm 17
12.5 mm 5
Provox 2 4 (3)

Provox XS 6 (5)

4.3. Assessment of Microorganisms Growing in Collected Biofilm Samples

In recruited patients, directly after the VP replacement procedure, failed VPs were placed in
sterile specimen containers and immediately transported to a microbiological laboratory. The voice
prostheses were immersed in 5 mL of thioglycolate broth (Thermo Fisher Scientific, Waltham, MA,
USA) and vortexed for 2–3 min. Then, 50 µL of the eluted material was seeded onto solid media
for yeast and bacteria growth. The solid culture media used for microbiological examination was as
follows: Sabouraud agar with and without antibiotics, Columbia agar with sheep’s blood, MacConkey
agar, and hemophilus selective agar (all media were from Thermo Fisher Scientific). After a minimum
of 48 h incubation, predominantly yeast and bacteria were identified using routine procedures that
involved colony morphology examination and Gram staining. Then, identification of the species was
performed using a Vitek 2 automated system (bioMerieux) with GNI, GPI, and Yeast ID cards.

4.4. Microscopic Studies

Macroscopic evaluation of the prostheses was performed within 5 h after removal.
Biofilm morphology, coverage, and localization of plaques were assessed. Microscopic examination
(topography) and mechanical measurements of the silicone prostheses and biofilm grown on their
surfaces were recorded using a laser confocal microscope Olympus LEXT OLS4000 (CLSM), a scanning
electron microscope Hitachi S-3000N (SEM), and an atomic force microscope JPK Instruments/Bruker
NanoWizard 4 BioScience (AFM). SEM microscopy showed the biofilm characterization on the
prosthesis surface. Images were made in BSE mode in a low vacuum. The CLSM microscope, in turn,
made it possible to visualize the surface of the silicone after biofilm removal and observe their damage
(3D topography maps). The topography of the biofilm on silicone surfaces was recorded using an
AFM. Pyramidal-shaped cantilevers (OLYMPUS OMCL-RC800) were used and characterized by a
spring constant of 0.1 N/m. Due to the lateral forces during contact mode scanning, a force-curve-based
imaging mode was used (JPK QI™mode—Quantitative Imaging). Topography maps of size 50× 50 µm
and 20 × 20 µm were carried out, with the resolution of 128 pixels per line, to show characteristics of
the prosthesis surface and biofilm morphology. AFM experiments were done within 1 h of sample
preparation, and silicone millimeter-scale pieces with biofilm were stored and kept in distilled water
during experiments at room temperature. AFM ran in force-spectroscopy mode also served as a
nanodetector for biofilm and polymer stiffness measurements. Elastic modulus (i.e., Young’s modulus)
of the biofilm and polymers was calculated based on force-indentation curves. For biofilm stiffness
measurements, force-indentation curves were collected on a stiff substrate and on the elastic biofilm
parts. Due to the biofilm’s high deformability and complexity, force-indentation curves were collected
using a silicone nitride cantilever with a spring constant of 2.5 N/m and a 20-µm diameter bead attached
to the end. Elasticity maps with a scan area of 50 × 50 µm, corresponding to a grid of 2 × 2 pixels,
were made in various places on the sample. By separation of the force curves recorded on the silicone
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surface and on the biofilm structures, we obtained the properties of the biofilm grown on prostheses.
Local mechanical properties (Young’s modulus) of new and used prostheses were also calculated based
on the force-indentation curves collected using OLYMPUS OMCL-RC800 cantilevers characterized
by a spring constant of 0.4 N/m. Elasticity maps with a scan area of 20 × 20 µm, corresponding to
a grid of 10 × 10 pixels, were made. All elasticity maps were collected from various sample areas
in liquid conditions. Young’s moduli of biofilm and silicone were derived from the Hertz–Sneddon
model applied to force-indentation curves [48] using the following formula:

F(∆z) =
4
3

√

R·E∗·∆z1.5

where E∗ is the apparent Young’s modulus:

1
E∗

=
1− µ2

tip

Etip
+

1− µ2
sample

Esample

If Esample � Etip (as is true for living cells), then 1
E∗ can be simplified:

1
E∗
≈

1− µ2
sample

Esample

Esample is Young’s modulus of the sample, and µsample is the Poisson ratio of the sample, related to
the compressibility of the material [31,49] and assumed to be 0.5 for an incompressible material.

4.5. Thermal Measurements

Differential scanning calorimetry (DSC) studies were carried out using a DSC Discovery
apparatus (TA Instruments, New Castle, DE, USA). The measurements were conducted in three
cycles (heat–cool–heat) in a temperature range from −90 to 350 ◦C, with a heating rate of 10 ◦C/min
and a cooling rate of 5 ◦C/min. The results discussed in the work were taken from the second heating
curves (first heating and cooling were performed to reduce the thermal history of the tested samples).
The obtained DSC curves were used to analyze melting temperature (Tm) and fusion enthalpy (∆Hm).
The degree of the silicone’s crystallinity (Xc) was determined [50] according to the following equation:

XC =
∆Hm

∆H100
m
·100%

where ∆H100
m is the fusion enthalpy of 100% crystalline polydimethylsiloxane 38.2 J/g.

Thermogravimetry (TG) tests were carried out using a Q500 thermogravimetric analyzer (TA
Instruments, New Castle, DE, USA) in a temperature range from 30 to 1000 ◦C and a nitrogen
atmosphere, with heating rate (k) values of 5, 10, and 20 ◦C/min. Special attention was paid to the
temperature at the start of thermal decomposition (TDS; taken as 1% of the weight loss of the sample).
The Kissinger method was used to determine the activation energy of the thermal decomposition
of the tested materials. This method is based on the dependence of the temperature value Tmax
(corresponding to the maximum DTG signal) to the heating rate k:

ln
(

k
T2

max

)
= −

Ea

R
·

1
Tmax

+ const.

As the heating rate increases, the temperature of the maximum intensity of the DTG signal also
increases. The Kissinger method is based on presenting the obtained Tmax values in the configuration.
The directional coefficient of the obtained straight line corresponds to the value (where Ea is the
activation energy, and R is a gas constant equal to 8.31 J/mol·K).
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4.6. Statistical Analysis

Statistical significance was determined using a two-tailed Student’s t-test for overall values.
Statistical analyses were performed using OriginPro 9.65 (OriginLab Corporation, Northampton, MA,
USA). p-values < 0.05 were considered to be statistically significant. Results are expressed as the
average from all force curves for each group. Overall average values of Young’s modulus and thermal
properties are presented as mean ± SD, where mean is the average value and SD is standard deviation.

The lack of relationship between fungal or bacterial species occurrence and VP lifetime is presented
as a result of the χ2 independence test in the column “p-value” of Tables 1a and 3. The hypothesis
of no correlation between bacterial or fungal species occurrence and time of VP exploitation (H0)
vs. the hypothesis of the correlation between bacterial or fungal species occurrence and time of VP
exploitation (H1 alternative) were tested. As the p test result is higher than the chosen significance
level of α = 0.05, there is no reason to reject H0. Therefore, it can be concluded that the occurrence of a
given species of fungus and bacteria is independent of the group of patients. For fungi and bacteria
species, p > α, so we did not observe statistical significance.

5. Conclusions

The formation of biofilms and the subsequent material deterioration by fungal and bacterial
growth are the main reasons for VP failure in laryngectomized patients. Changes in the mechanical
and thermal properties of silicone by the process of biofilm formation were also observed. The most
common fungal species on the VPs were Candida krusei, Candida albicans, Candida glabrata, and Candida
tropicalis. The most common bacterial species was Staphylococcus aureus. We have observed that there
is no statistically significant difference between the occurrence of certain fungal or bacterial species
and the time of VP function upon implantation. No patients involved in this study developed any
systemic infection that could be associated with microorganisms residing in VP biofilm. New polymeric
material that is developed to produce VPs should be improved to prevent deformation and cracking
during exploitation.
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Abbreviations

VP Voice prostheses
TL Total laryngectomy
SEM Scanning electron microscope
AFM Atomic force microscope
TE Tracheoesophageal
ECM Extracelullar matrix
NADPH Nicotinamide adenine dinucleotide phosphate
CLSM Laser confocal microscope
DSC Differential scanning calorimetry
TG Thermogravimetry
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