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Abstract: Despite the hope that was raised with the implementation of antibiotics to the treatment of
infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug
resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic
methods in order to extend our knowledge regarding the mode of action of the conventional and novel
antimicrobial agents from a perspective of single microbial cells as well as their communities growing
in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly
used to study different aspects of the pathophysiology of noninfectious conditions with attempts to
characterize morphological and rheological properties of tissues, individual mammalian cells as well
as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different
stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable
approach in studying microorganisms in regard to changes in their morphology and nanomechanical
properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well
as the mechanisms behind their virulence. This review summarizes recent developments and the
authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial
treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development
of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant
bacterial strains is also discussed.
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1. Introduction

Application of Atomic Force Microscopy (AFM) in the Field of Microbiology

A set of specialized equipment and experimental methods that are currently used to develop new
antibiotics and antiviral compounds includes, among others, such techniques as flow cytometry [1],
spectroscopy [2], fluorometry [3], scanning electron microscopy (SEM) [4], and transmission electron
microscopy (TEM) [5]. Recently, atomic force microscopy (AFM) found its place as a technology with
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great potential to study the microorganisms themselves as well as the molecules that might control
their growth. Historically, in 1986 Binnig, Quate, and Gerber invented atomic force microscope to
image nonconductive surfaces with atomic resolution [6–8]. From that time, AFM has been employed
in a large spectrum of disciplines such as solid state physics, molecular engineering, semiconductor
technology, surface chemistry, polymer science, and medicine [9–11], becoming one of the best tools in
terms of efficiency and flexibility to probe materials and biological samples [12,13].

Over the years, different AFM working modes have been developed, permitting the investigation
of samples with varied size, adhesion, stiffness, and architecture features. The atomic force microscope
in its basic application provides two imaging modes, known as static mode and dynamic mode,
to collect the data from the sample’s surface. Nevertheless, apart from the standard modes, a broad
spectrum of new modes was developed in order to control probe–sample interactions and record
mechanical properties of samples without damaging them, with the quantitative imaging (QI™)
mode of JPK Instruments™, the peak force™ tapping mode of Bruker™ or the “jumping mode” of
Nanotec™ as the most well-recognized. Forces used in these modes can be as low as on the order of
pN and with that users can achieve high resolution imaging with quantitative property mapping of
mechanical and morphological features. Typically, analyses are carried out using a cantilever with
a sharp, pyramidal silicon nitride tip that contacts the surface of the immobilized sample during
imaging, though numerous cantilever tip shapes, including conical, sphere, or even tipples, might be
employed for the purpose of AFM research (Figure 1A) [6]. The cantilever acts as a probe scanning
a planar substrate, providing its topographic map. When the tip scans the sample in the x and y
directions to obtain the images, the soft cantilever bends when it comes in contact with its surface in
the z direction. As it bends, the deflection is detected by the movement of a laser beam reflected from
the tip [8,14] (Figure 1B). That deflection is recorded and converted to forces using the spring constant
of the cantilever in the software. While the probe scans the substrate, the adhesion forces between the
sample and tip, and the stiffness of the sample are being recorded [15]. Adhesion is measured from
the retraction curve, while stiffness is from the approach curve (Figure 1C). Additionally, while using
AFM with a camera, the user can capture optical images (Figure 1D), topography (Figure 1E), stiffness
map (Figure 1F), adhesion map (Figure 1G), and combine images, e.g., the overlay of fluorescence and
stiffness (Figure 1H). A detailed description of most AFM modes along with their modifications was
reviewed recently by Toca–Herrera [16].

An ever-growing number of studies has confirmed that AFM-based experiments provide an
opportunity to gain biomechanical parameters at nanoscale resolution to characterize the effects of
antimicrobial agents on bacteria, fungi, and viruses, as well as to investigate microorganisms’ interaction
with host cells during inflammatory response occurring at the site of infections [4,17–20]. One of crucial
advantages of AFM over other microscopy-based methods is the possibility to perform analyses in
experimental conditions closely mimicking the physiological environment of living microorganisms.
Notably, AFM allows the researcher to set out the experiment in air, vacuum, and, most importantly,
in water containing media dedicated for biological applications. Therefore, AFM-based analysis
allows for imaging of time-dependent processes without drying of samples, thus resulting in less
fixing-associated artifacts [15,21]. In comparison, the well-recognized and broadly utilized SEM
technique can only test the frozen or fixed samples, providing information before and after the
treatment; however, it does not show what happened during the course of treatment in real time.
In effect, AFM has become one of the best tools for real-time observations [22,23]. Moreover, AFM offers
higher imaging resolution when compared to other microscopic methods. For instance, in SEM there is
a possibility to observe images in a resolution of 1 nm, while AFM can produce images with 0.1 nm
resolution [24,25]. Indeed, AFM allows recording parameters describing morphological changes of the
object as nanotopography [26–28]. Additionally, interactions between the cantilever and tested object
permit the delivery of information about such phenomena as stiffness, adhesion, and friction [29,30].
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Figure 1. Examples of main atomic force microscopy (AFM) applications in microbiological research. 
(A) Schematic representation of sample immobilization; (B) schematic representation of AFM 
measurements; (C) force vs. displacement curve registered when force is applied to reference (glass 
surface) or investigated (bacteria) sample; (D) optical image of the sample; (E) sample topography; 
(F) stiffness mapping; (G) adhesion mapping; (H) combined fluorescence imaging and stiffness 
mapping. 

Nevertheless, in order to properly collect and then analyze the data obtained during AFM 
analysis, one should be aware of the limitations and difficulties associated with this technique. Firstly, 
it is important to note that when acquiring AFM images, users can observe artifacts due to an 
improper choice of cantilever tip or scanner movements (Figure 2), and some of these may lead to 
misleading analyses and/or incorrect conclusions [31–33]. Among the other factors responsible for 
such artifacts’ generation in AFM images, (i) thermal drift caused by temperature variations [31,34], 
(ii) deformation and damage due to probing in contact [32], (iii) environmental instability such as 
sample movement [31,33], or (iv) even software side settings [31,32,35] are well recognized. 
 

Secondly, for the purpose of precise location of microbial cells during scanning and carrying out 
a reliable examination in strictly defined areas of the cell, it is necessary to immobilize a 
microorganism on the probed surface. Such manipulation prevents the creation of artifacts and/or 
damage of AFM tip during the analysis. Importantly, the immobilization step should not affect the 
integrity of the microorganism surface in a chemical or structural way. Most bacteria do not adhere 
well to solid surfaces or glass; thus, different techniques are required for proper bacterial cell 
immobilization, including (i) drying of the sample, (ii) passing suspension through the filters to stock 
the cells into the pores [36], (iii) soft gels [37], or (iv) surface coatings that assure charge drawing 
immobilization [36,38]. If there is a need for high-resolution imaging, it is advantageous to employ 
mica surface characterized by good adsorption and low background noise [39]. Notably, although in 

Figure 1. Examples of main atomic force microscopy (AFM) applications in microbiological research.
(A) Schematic representation of sample immobilization; (B) schematic representation of AFM
measurements; (C) force vs. displacement curve registered when force is applied to reference (glass
surface) or investigated (bacteria) sample; (D) optical image of the sample; (E) sample topography;
(F) stiffness mapping; (G) adhesion mapping; (H) combined fluorescence imaging and stiffness mapping.

Nevertheless, in order to properly collect and then analyze the data obtained during AFM
analysis, one should be aware of the limitations and difficulties associated with this technique. Firstly,
it is important to note that when acquiring AFM images, users can observe artifacts due to an
improper choice of cantilever tip or scanner movements (Figure 2), and some of these may lead to
misleading analyses and/or incorrect conclusions [31–33]. Among the other factors responsible for
such artifacts’ generation in AFM images, (i) thermal drift caused by temperature variations [31,34],
(ii) deformation and damage due to probing in contact [32], (iii) environmental instability such as
sample movement [31,33], or (iv) even software side settings [31,32,35] are well recognized.

Secondly, for the purpose of precise location of microbial cells during scanning and carrying out a
reliable examination in strictly defined areas of the cell, it is necessary to immobilize a microorganism
on the probed surface. Such manipulation prevents the creation of artifacts and/or damage of AFM
tip during the analysis. Importantly, the immobilization step should not affect the integrity of the
microorganism surface in a chemical or structural way. Most bacteria do not adhere well to solid
surfaces or glass; thus, different techniques are required for proper bacterial cell immobilization,
including (i) drying of the sample, (ii) passing suspension through the filters to stock the cells into the
pores [36], (iii) soft gels [37], or (iv) surface coatings that assure charge drawing immobilization [36,38].
If there is a need for high-resolution imaging, it is advantageous to employ mica surface characterized
by good adsorption and low background noise [39]. Notably, although in most basic biofilm-focused
studies bacteria are placed directly onto glass, allowing for cells to adhere and to form biofilm
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communities, occasionally bacteria adhere relatively weakly; thus, AFM probes can easily detach
cells during scanning. In such cases, mechanical entrapment in porous filters and soft gels like agar
or agarose provides a reliable option for immobilization [36,40–43]. Noteworthy, while performing
in-air scanning, this technique enhances the contrast of images [37]. Moreover, surface coatings such
as polyethyleneimine (PEI), polydopamine (PDA), poly-l-lysine (PLL), poly-D-lysine (PDL), and
aminosilanes (like APTES) allow for more consistent and controlled adhesion processes [36,44–47].
Nevertheless, in such an approach, interactions between the coating agents and microorganisms have to
be taken into consideration. Although PLL is widely used as one of the surface coatings, its antimicrobial
activity is a well-recognized feature, which may influence the viability of bacterial cells and thus induce
changes in AFM measurements and mapping [48]. In addition to these immobilization approaches,
surface coating can be used directly on AFM cantilever for single-cell force spectroscopy (SCFS) to
mount bacteria onto tipless or colloidal cantilevers for specific adhesion/binding measurements without
destruction of the cells [44,45].
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quantitative mode (QI) (force-distance curves are recorded at every pixel of the image, meaning that 
the probe moves vertically towards the surface) with artifacts due to cantilever slippage and sample 
movement. (A) Topography image; (B) error signal; (C) lateral deflection that corresponds to friction 
forces; (D) topography image; (E) stiffness map acquired from the slope of the force-distance curve 
while approaching and indenting the surface; (F) adhesion map acquired from the force-distance 
curve when retracting from the surface. Arrows present artifacts recorded using AFM. 

It is also noteworthy that during the planning of the experiment, additional limitations, i.e., 
magnification gap between microscopes, should be taken under the consideration. For instance, 
although a prior AFM scan of the sample is visualized and localized using optical microscopy, a 
considerable difference in the magnification range of AFM and optical microscope makes it difficult 
to relocate the same sample area once the AFM probe is withdrawn from the surface. Such 
manipulation considerably hampers the correlative microscopic observations using AFM and other 
microscope techniques, such as fluorescence. For this reason, improved relocation methods, which 
are highly adjusted to specific experimental conditions and allow for repeated tip-sample relocation 

Figure 2. AFM topography images of (A–C) Candida albicans measured in contact mode (probe is
in physical contact with the surface and scans the sample horizontally) and (D–F) Bacillus subtilis in
quantitative mode (QI) (force-distance curves are recorded at every pixel of the image, meaning that
the probe moves vertically towards the surface) with artifacts due to cantilever slippage and sample
movement. (A) Topography image; (B) error signal; (C) lateral deflection that corresponds to friction
forces; (D) topography image; (E) stiffness map acquired from the slope of the force-distance curve
while approaching and indenting the surface; (F) adhesion map acquired from the force-distance curve
when retracting from the surface. Arrows present artifacts recorded using AFM.

It is also noteworthy that during the planning of the experiment, additional limitations, i.e.,
magnification gap between microscopes, should be taken under the consideration. For instance,
although a prior AFM scan of the sample is visualized and localized using optical microscopy,
a considerable difference in the magnification range of AFM and optical microscope makes it difficult to
relocate the same sample area once the AFM probe is withdrawn from the surface. Such manipulation
considerably hampers the correlative microscopic observations using AFM and other microscope
techniques, such as fluorescence. For this reason, improved relocation methods, which are highly
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adjusted to specific experimental conditions and allow for repeated tip-sample relocation of micro-
and nanosized samples for AFM imaging, are constantly developed. One of the newest achievements
in this field was published recently by Abu Quba et al. [49]. As the authors demonstrated, the use
of commercially available TEM grids with particles and cells fixed on the top permits a fast and
cost-effective localization of nano region-of-interest and implementation of AFM/ESEM (environmental
scanning electron microscopy) correlative microscopy analyses. Importantly, such an approach helps
to detect AFM artifacts without any adaptations of AFM [49].

Finally, factors such as the geometry of the probe or the strength of imaging can significantly
reduce the resolution of images and thus result in a collection of incorrect data, causing displacement
of the examined object or even its damage. In order to limit potential structural damage of the tested
cells and to maintain adequate image resolution at the same time, it is crucial that the forces between
the probe and the tested sample are controllable. Some reports suggest that decreasing this attraction
force is possible by performing the measurement in an aqueous environment rather than imaging in
the air. At the same time, it is recommended that AFM-based analysis of any new biological sample
should be preceded by investigation of the effect of the pH and ion concentration in a used buffer to
adjust applied force during analysis acquisition [50].

2. AFM-Based Investigation as a Novel Approach to Fight with Drug Resistance in Bacteria
and Fungi

2.1. Resistance to Antibiotics—An Emerging Problem in Medical and Environmental Microbiology

Since their pioneering first application in 1940s, antibiotics are continuously used to treat
patients with bacterial infections. Over the years these “magic bullets” have significantly reduced the
number of deaths, but their misusing and overusing has resulted in adaptation of microorganisms
to selective pressure exerted by them by means of developing different molecular mechanisms
of resistance [51]. According to the Centers for Disease Control and Prevention (CDC), each
year in the United States at least 2 million people become infected with drug-resistant bacteria
and at least 23,000 people die as a result of these infections [52]. Moreover, the World Health
Organization (WHO) predicts that drug-resistant diseases could cause 10 million deaths each year by
2050 [53]. Expanding drug resistance is observed in the course of infections such as those caused by
gram-positive cocci, e.g., methicillin-resistant Staphylococcus aureus (MRSA), and gram-negative rods,
e.g., multidrug-resistant (MDR) Klebsiella pneumoniae, and extensively drug-resistant bacteria (XDR)
such as carbapenemase-producing K. pneumoniae or Mycobacterium tuberculosis [54–59]. Therefore,
the search for novel and innovative analytical and diagnostic methods that will facilitate characterization
and elimination of those antibiotic-resistant bacteria is of great significance and is challenging at the
same time.

In this field of research, the most widespread application of atomic force microscopy includes
(i) the detection of changes in microbes’ morphology or abnormalities in their structure upon
antibiotic-induced killing, thus, indirectly measuring the microbe susceptibility profile, (ii) analysis
of the nanomechanical changes in the microbial cell envelope, e.g., stiffness, in order to understand
mechanisms associated with drug resistance as well as (iii) the investigation of colonization and
adhesion mechanisms of microbial cells, which is crucial for the biofilm-forming ability of most
pathogens [17,60].

2.2. Analysis of Nanotopography of Pathogens as an Approach to Elucidate Viability of Microbes and
Antibiotics’ Mechanism of Action

2.2.1. Bacteria

One of the most common applications of AFM in microbiology research is the direct visualization
of microorganisms‘ morphology upon exposure to antibiotics, and one of the first was performed
by Butt et al. on dry archaebacterium (Halobacterium halobium) [61]. Briefly, the observation and
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quantification of alterations in the bacterial cell envelope architecture exposed to antibiotics may
provide valuable information on the potential mechanism of action of the tested agents.

Atomic force microscopy is particularly useful for the determination of the activity of agents
with membranolytic mechanism of action, and understanding the consequences of their insertion into
bacterial membrane. For such purpose, Meincken et al. employed AFM to investigate the mechanisms
of magainin 2 (Mag 2a), PGLa (peptidyl-glycylleucine-carboxyamide), and melittin-induced damage
of E. coli cell envelope [28]. The AFM study revealed that the effects of these three peptides include
the increase in surface roughness and lesions in the cell wall with the higher effect observed for Mag
2a and non-selective melittin when compared to PGLa. A thorough AFM-based analysis allowed
us to conclude that changes in surface roughness were induced by peptide integration into the
outer membrane, resulting in a “crumpling” effect because of the increased surface area. This study
also confirmed the previous results reporting the magainin effect on bacterial cell membranes [62].
AFM analyses were also a basis for the conclusion that the destruction and reorganization of lipid
arrangement within the outer membrane supports peptide translocation and insertion into the sensitive
inner membrane that lead to cell lysis and death. The authors observed that all tested peptides caused
significant damage to the apical surface of the bacterial cell wall and that the above is most likely the
consequence of the inner membrane damage rather than the outer one. Simultaneously, the atomic
force microscope was presented as a powerful tool to distinguish between the types of peptide-induced
damage of bacteria. While melittin causes big gashes in the cell envelope and noticeable leakage
of cytosolic fluid, indicating the damage to the inner membrane, Mag 2a was reported to cause
pronounced vesiculation of the outer membrane [28]. Most recently, Overton et al. extended the
knowledge on Mag 2a-induced killing and investigated the biophysical consequences of magainin
2 treatment using AFM combined with fluorescence observations [63]. The authors demonstrated
that upon treatment, E. coli cells are able to maintain the stable cellular turgor pressure, despite the
permeabilization of cellular membranes by Mag 2a, which is governed by the bacterial homeostasis
machinery. Further exposition of bacteria to magainin 2 treatment eventually leads to a decrease of
turgor pressure accompanied by remodeling of the outer membrane, resulting in its increased elasticity
and greater adhesion properties. This provided new insights into the resistance of some gram-negative
bacteria to the membrane-destructive effects of antimicrobial peptides [63].

In another study, Domingues et al. reported surface changes of E. coli and S. aureus after the
addition of antimicrobial protein rBPI21 using AFM as a tool to visualize the surface disturbance
accompanied by cell lysis [64]. AFM was also employed to characterize the polymyxin B effect on
bacterial membranes as reported by Oh et al. [65]. The deflection images of sample topography
acquired using contact-mode settings allowed for the observation of extensive surface damages of
the bacterial outer membrane [65], which confirms the well-established membrane permeabilizing
mechanism of this antibiotic [66]. Similarly, Fernandez et al. used atomic force microscopy for imaging
the antibacterial effects of tailocins, which are phage tail-like bacteriocins, produced by many bacteria
including Pseudomonas aeruginosa. The authors noticed the adherence of tailocins to the cell envelope
of the phytopathogenic bacterium Xanthomonas axonopodis, which resulted in damage and intracellular
matrix leakage, leading to the cell lysis. The cell envelope damage was clearly visible with AFM
topography. Additionally, AFM was used to obtain phase images and tailocins size, and the acquired
size information was similar to the one from TEM [67].

The usefulness of AFM to design and further investigate novel compounds with potent
antimicrobial activity against multidrug-resistant bacteria was also encouraged by He et al., who
designed a new family of cyclic antimicrobial peptides (CAMPs) targeting MDR strains of P. aeruginosa.
In detail, AFM and TEM studies showed that CAMP RH11 induces disruption of the bacterial cell
membrane, and doughnut-shaped forms of lipid-peptide aggregates were observed around the bacteria.
The authors concluded that these shapes suggest the formation of lipid-peptide aggregates at the
bacterial membrane or lipid vesicle surface, which leads to bacteria detachment after reaching a
critical size, membrane lysis, and finally cell death [68]. Considerable alterations in morphological
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features as well as cell perturbation of P. aeruginosa were also recorded when bacteria was treated
with ciprofloxain combined with Lys-a1 antimicrobial peptide [69]. Interestingly, AFM has also been
engaged by some researchers to confirm the intracellular mechanisms of actions of newly-synthetized
antimicrobials. For instance, Ferreira et al. described the antibacterial activity of a set of fluoroquinolone
metalloantibiotics developed by the complexation of fluoroquinolones with divalent metal ions and
phenanthroline [70]. The authors confirmed that the designed complex-based antimicrobials exert their
activity via bacterial topoisomerase IV and DNA gyrase, and since AFM analyses showed no damage
to bacterial membranes, the authors concluded that the probable mechanism of action depends on
intracellular pathways only [70].

Likewise, in our research (Figure 3), we used AFM to assess the bactericidal effects of
ceragenins (CSA), i.e., synthetic, lipid-based analogs of natural antimicrobial peptides, against
NDM-1 carbapenemase-producing K. pneumoniae [71]. In a compelling number of studies, ceragenins
were demonstrated as potent antimicrobial agents with a membrane-permeabilizing mechanism of
action [2,5,72]. In accordance with these reports, we recorded significant activity of ceragenin CSA-131
against the drug-resistant K. pneumoniae BAA-2473 strain, which was reflected in membrane disruption,
shape shifting, and morphological alterations of bacteria, including surface wrinkling and microcraks
formation. Moreover, considerable changes of mechanical properties of the tested bacteria were noted
accompanied by a decrease of cellular stiffness and adhesion force. Overall, all of these results obtained
on the nano-level extend our knowledge on the utility of ceragenins in the treatment of drug-resistant
bacterial pathogens [71].
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Figure 3. Alterations in morphology and surface properties of CSA-131-treated drug-resistant Klebsiella
pneumoniae BAA-2473 strain. (A–D) Control; (E–H) CSA-131 treated strain; (A,E) topography images;
(B,F) error signal; (C,G) stiffness map; (D,H) adhesion map. Arrow in panel f presents microcracks and
surface wrinkling due to CSA-131 treatment.

Finally, in one of the newer studies, it was demonstrated that AFM application in microbiological
research should also include postmortem analysis of antibiotic-treated bacteria. Such an approach
was engaged by Singh et al. In their paper, the authors aimed to examine the bactericidal effect of
food-grade lipidic nanoemulsion (noncationized/cationized) using B. subtilis as a model bacterium [73].
As expected, TEM, SEM, and AFM analysis revealed nanoemulsion-induced morphological transitions
in the treated bacteria, including cell wall destruction and leakage of intracellular content. Nevertheless,
only by using AFM was it possible to identify piece-by-piece the fragmented cell wall and to locate it in
its appropriate vacant places, thus completing the cell wall contour of the ghost cell. Therefore, AFM
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studies are particularly important in the context of investigation of the bacterial cell fragmentation
mechanisms [73].

2.2.2. Fungi

Considering that the spectrum of drug-resistant strains among fungal pathogens is growing at
a dangerous rate and that the number of new antifungal agents introduced into clinical practice is
significantly lower than that of new antibiotics, further research on new compounds with potent
fungicidal activity is needed. Presently, a growing interest of scientists in the employment of AFM-based
techniques for the purpose of novel antifungal development is observed.

Recently, Quiles et al. used the AFM-FTIR technique to investigate the morphological, mechanical,
and biochemical cell wall changes in caspofungin-treated Candida albicans, i.e., the leading yeast
responsible for fungal infections worldwide. In detail, combining of AFM with infrared spectroscopy
revealed mechanisms responsible for caspofungin resistance in C. albicans cells, which remodels the
cell wall composition and its stiffening through chitin synthesis, proving the usefulness of AFM to
understand the drug resistance-associated mechanisms at the molecular level [74]. Another similar
study was carried out by Shahina et al. in which inhibitory activity of Cinnamomum zeylancium bark
extract against C. albicans was tested. In this case, atomic force microscopy was used to show the fungal
surface exfoliation and loss of the cell wall integrity. In a molecular way, essential oil treatment caused
cell cycle arrest by disturbing beta tubulin distribution and triggering cell membrane dysfunction
which allowed for the outflow of cellular components [75]. In 2017, Hasim et al. also recorded changes
in surface roughness and decreased elasticity of C. albicans due to increased exposure of β-(1,3)-glucan,
confirming the hypothesis that the therapies enhancing its exposure might be efficiently translated into
improved infection control [76]. Similarly, Li et al., owing to AFM, explicitly proved loss of fungal
membrane permeability upon treatment with corilagin. The authors witnessed a decrease in the cell’s
height and width along with an increase in length and roughness [77].

In our studies, the atomic force microscope was employed mostly as a tool to investigate
candidacidal [3,4] activity of human plasma gelsolin-derived PBP10 peptide [78] and other
membrane-active compounds, including ceragenins and human cathelicidin LL-37 (Figure 4) [3,79].
AFM analyses confirmed not only a potent antimicrobial activity of the tested agents, but also provided
new insights in membrane-permeabilizing action of ceragenins and LL-37 peptide. In agreement with
previous assumptions that AFM should be considered as an important tool to analyze pathogens’
susceptibility to antimicrobial agents, our studies visualized the damage of the membranes of the tested
pathogens, which was additionally accompanied by leakage of intracellular content or even whole cell
lysis [78,80]. Interestingly, due to the employment of AFM, it was possible to reveal additional aspects
of ceragenin CSA-13 and LL-37 killing. Comparison of error signal and lateral deflection images of
CSA-13- and LL-37-treated C. albicans cells has shown that CSA-13 increases surface wrinkling, while
LL-37 causes small clack-like breaks of the cell surface, suggesting that both these compounds might
affect the cellular viability via different mechanism. Notably, such information was not available using
SEM, which highlights the innovative approach of AFM-based analyses [4].

Some studies also demonstrate the usefulness of AFM-based analyses in examination of the
activity of developed antifungals against dermatophytes and other filamentous fungi. In a recent
paper, Souza et al., using both AFM and SEM analyses, revealed the potent antifungal activity of a
set of synthetic antimicrobial peptides against Trichophyton mentagrophytes and T. rubrum, which was
evidenced by morphological disruption of microconidia morphology, rupture of the cell wall and
membrane accompanied by loss of cytoplasmic content, and further cellular death [81]. In a similar
way, the capability of AFM to image the filamentous fungi surface upon the introduced antifungal
treatment was used by Sen S. and co-workers [82].
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Figure 4. Changes in Candida albicans cells morphology upon treatment with cathelicidin LL-37. Panels
(A–C) control; (D–I) cells treated with LL-37 peptide, 50 µg/mL; (A,D) topography images; (B,E) error
signal; (C,F) lateral deflection that corresponds to friction forces (scale bar 2 µm). Panels (G–I) display
local changes in surface morphology of a single cell presented in previous panels (scale bar 200 nm).

2.2.3. Viruses

The high resolution of the atomic force microscope has been presented to allow the visualization
not only of a micrometer scale pathogens, i.e., bacteria and fungi, but also to permit the investigatation
of pathogens with nanometer sizes, such as viruses.

For example, Godon et al. described how to record nonbiased topographical surfaces of viruses [83].
The authors tested tobacco mosaic virus in various conditions such as: Air, liquid, imaging on mica or
self-assembled monolayer, and two different imaging modes: Tapping mode and PeakForce tapping.
The key factor in air measurement was the substrate, whereas in liquid it was the imaging mode.
Godon et al. acquired the anticipated height of the virus with PeakForce tapping in both environments,
but only when using the self-assembled monolayer. This study suggests that the best imaging can be
acheived by switching from mica to self-assembled monolayer. Another research group led by Kämmer
presented the advantages of using AFM instead of SEM [84]. In the referred study, the authors used
Herpes simplex virus to identify differences between the two methods. The results show that the SEM,
but not AFM, measurement lowered the dimensions due to the samples’ preparation process. As a



Pathogens 2020, 9, 969 10 of 30

result, AFM could play a key role as a forefront technique in diagnostic virology. Similar comparison
of SEM and AFM was performed by de Pablo et al. [85]. The example image of virus topography
compared to electron microscopy is shown in Figure 5.
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Figure 5. Images of human adenovirus collected using AFM show the topographies corresponding to
single adenovirus particles oriented with a (A) twofold, (B) threefold, or (C) fivefold symmetry axis on
top. AFM images are compared with EM and EM-dilated structural models. The right column (fourth
column) shows AFM topographic images that have been filtered to enhance the borders by obtaining
the cosine of the angle between the normal vector of the surface and the normal direction of the paper
sheet. Adapted with permission from Springer [77].

Furthermore, Barinov et al. presented the use of high-resolution AFM imaging to extract and
create height and volume distribution histograms to describe the oligomeric state of hemagglutinins of
the influenza virus, which are glycoproteins causing agglutination of red blood cells [86]. The results
showed that the large oligomers were unstable, and the oligomeric size was affected by pH and
ligands. The DNA aptamer induces the formation of large oligomers, whilst antibody binding results in
generation of small oligomers [86]. Another study by Azinas et al. showed that membrane-containing
virus particles behave similarly to composite materials [87]. AFM was used for topography and
nanoindentation assays to assess their stiffness and yield behavior against mechanical stress, which is
higher in viruses that lack a membrane outside their capsids. Another study performed on viruses
presented the real time self-recovery of the membrane. As demonstrated, the authors damaged the
protein shells with single nanoindentations or by increased interaction force between the cantilever and
a shell in the amplitude modulation dynamic mode, and then recorded the self-recuperation events for
T7 bacteriophage capsids. Notably, regardless of the considerable limitations of the research, including
low statistical significance, low number of particles tested, and no control over what type of damage
would be restored, this study was a first to demonstrate the utlity of AFM in investigating fracture
self-healing on virus shells [88].
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2.3. Alterations in Microbes’ Cellular Stiffness as an Indicator of Antimicrobial Activity of Tested Molecules

The measurements of microbial cell physicochemical properties help evaluate their interactions
with the environment and with each other. It has been proposed that properties of live microbial
cells are modifiable by antimicrobials and antiseptics agents [3,4,89]. Viscoelasticity, and adherence of
cell to surface, and cell to cell, have been recognized as factors promoting microbial survival [90,91].
New nanoscale evaluation of microbial properties is providing a new path for research into growth
and survival of microbes, as well as they eradication upon action of antimicrobial agents [92,93].

In 2003, da Silva et al. tested the effects of peptidyl-glycylleucine-carboxyamide (PGLa),
an antimicrobial peptide isolated from hemocytes of frog skin, on E. coli viability. According to
the provided AFM-based analyses, which included imaging and measuring bacterial stiffness in
physiological conditions upon treatment with this agent, da Silva demonstrated that the PGLa activity
is manifested by changes that occurred over two phases. The first one was characterized by the
loss of outer membrane stiffness and subsequently of topographic features, as well as the formation
of micelles. The second phase consisted of further cell damage and loss of cytoplasm material,
followed by cell detachment from the substrate and lysis of treated cells which indicated the likely
PGLa interaction with membrane and its cross-binding to the negative charges of lipopolysaccharide
(LPS) [94]. The “two-phase effect” was also observed in one of our studies aimed to decipher the
antimicrobial action of cathelicidin LL-37 or ceragenin CSA-13 against Bacillus subtilis [17]. Briefly,
initally we recorded stiffening of B. subtilis cell envelope upon treatment with these agents, which
afterwards softened in a time-dependent manner in comparison to non-treated cells [17]. The former
phenomen is most likely an active bacterial response against the antimicrobial assult, which is in line
with observations that bacteria have the ability to regulate the stiffness according to their needs, and
might indicate the importance of cell stiffness regulation as a part of bacteria cell survival. Overall,
these obervations contribute to a better understanding of the rheological consequences of antibacterial
agent binding/insertion into the bacterial cell membrane (Figure 6).

In other research, considerable changes in the antibacterial effect of SiO2-NPs nanoparticles
depending on their size were noted [95,96]. These studies showed that 100-nm SiO2-NPs lack the ability
to modify both morphology and E. coli cell stiffness to a significant level, indicating their harmless
behavior towards those bacteria. However, 4-nm nanoparticles presented with a significant decrease in
the Young modulus, which is assumed to be associated with damaging the bacterial outer membrane
and the destruction of the peptidoglycan layer which subsequently leads to the cell lysis [95].

Most recently, AFM was also employed to assess the morphological and mechanical properties
governing bacteria antibiotic resistance and persistence [97]. Using E. coli as a model bacterium,
Uzoechi et al. performed AFM-based analysis of morphology, adhesion, elasticity, root mean square
roughness, and surface thickness of ampicillin-treated bacteria and concluded that both resistant and
persistent E. coli bacteria combat the ampicillin exposure by decreasing the cellular size, introducing
into the dormancy state, and altering the mechanistic features of cells by increasing their elasticity,
roughness, and grafting density. Notably, knowledge about such mechanistic insights into resistant
and persisting bacteria functioning in response to antibiotic assault is crucial for further development
of new antibiotics [97]. Interestingly, in one of the recent studies, Krce et al. demonstrated that
antimicrobial-treated bacteria might exert differences in mechanical properties, even when inspection
of cellular morphology does not detect any alterations, as concluded from their research aimed to
probe E. coli bacteria treated with silver nanoparticles [98]. Since the comparison of morphological
features of untreated and treated bacteria did not provide any significant data, authors aimed to
examine mechanical properties of the cells using the QI mode. Interestingly, it was recorded that
Young’s modulus was distributed binomally, with two clearly split maxima that differed in value
for an order of magnitude. Particularly, the softer regions were randomly distributed on the cell,
which speculatively might represent the future points of pore formation. For post-treated bacteria,
the narrowing of the stiffer Young’ modulus distribution was also recorded, which was explained as an
indicator of metabolic activity reduction [98].
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The effects of another antimicrobial peptide—Psd1 defensin—were tested on C. albicans,
demonstrating surface alterations, membrane disruption, and leakage of cellular contents accompanied
by cell softening upon Psd1 treatment [99]. Notably, changes in cell stiffness were the first indicator
of the defensin’s effect and can be related with the evidence that Psd1 has glucosylceramide as a
molecular target in C. albicans cell membrane [100].
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Figure 6. Changes in mechanical properties of Bacillus subtilis cells before and after CSA-13 (30 µg/mL)
treatment. (A,C,F) Control and (B,D,G) after CSA-13 treatment. (A,B) Changes in height of the
cell; (C,D) stiffness map; (E) average Young’s modulus; (F,G) adhesion map; (H) average measured
adhesion force. Unpaired Student’s t-test was used to confirm statistical differences between the
samples (* p ≤ 0.05). More detailed information of AFM application in the study aiming to understand
the rheological consequences of antibacterial agent binding/insertion into B. subtilis cell membrane are
presented in [17].

In terms of AFM employment to study viruses, van Rosemalen et al. determined the alterations
in the mechanical changes of human adenovirus type 5 (AdV) upon the induction of single point
mutation [101]. It was demonstrated that even single-point mutation might result in the two-fold
increase in stiffness, which authors suggest is due to the DNA crosslinking activity of protein VII,
and which may help to develop more stable vectors for therapeutic applications. The structure of AdV
capsids before and after measurement is presented in Figure 7.
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2.4. AFM Analysis in Investigation of Microbial Surface Adhesion, Colonization Mechanisms, and
Virus–Cell Binding

Adherence governs the ability of bacteria to colonize different surfaces. For this reason,
the limitation of adhesion process is favorable and highly encouraged in the course of the creation of
novel biomaterials, both for external use and implanted, as well as the development of anti-infectious
therapeutics or production of improved materials for industrial purposes [30,44,102]. The capability of
AFM to measure adhesion forces between the catilever tip and scanned sample is particularly useful in
this manner.

Measurements of adhesion have to take into consideration the influence of capillary condensation
of water [103], because capillary forces between the AFM tip and the wet surface could interfere with
imaging and force measurement. These forces could be avoided by operating the whole experiment
immersed in solution, which also allows for in situ imaging [104]. Measurements in the air help avoid
the possibility of suspended particles’ and bacterial cells’ attachment to the tip. On the other hand,
physiochemical changes to the cells may occur during the drying process [105].

2.4.1. AFM Analysis of Mechanisms of Pathogens Colonization, Microbe–Microbe Interactions,
and Binding to Cells

Researchers can use single-cell force spectroscopy (SCFS) and single-molecule force spectroscopy
(SMFS) as tools for adhesion force measurement. Compared to isothermal titration calorimetry (ITC)
and surface plasmon resonance (SPR), force nanoscopy enables the label-free analysis directly on
live cells [106]. Importantly, the adhesion measurements allow us to better understand the microbial
adhesion and colonization processes, which might be further translated into improved materials for
medicine or industry. The review article that describes those methods in detail was recently published
by Beussart et al. [107].

In one of such studies, Sjollema et al. used AFM to investigate the attachment and re-attachment
of various bacteria from Staphylococcus and Streptococcus species to tested surfaces using the SCFS mode
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with a PLL-coated bacterial probe. Results demonstrated that bacteria adhere to surfaces through
multiple tethers that can detach and re-attach, but never at the same time, which leads to irreversible
bacterial adhesion [45]. In another study, Wang et al. studied the growth and adherence of S. aureus in
the presence of prostaglandin E2 (PGE2), i.e., a key inflammatory mediator in chronic infections [108].
Authors used PLL-coated tipless cantilevers to attach bacteria (untreated and treated with PGE2),
measured surfaces with and without human fibronectin, and showed higher adhesion forces to human
fibronectin after treatment with PGE2, which confirmed that S. aureus’ growth and adhesion to epithelial
cells was promoted by the COX-2/PGE2 pathway [108]. Most recently, AFM-based single-molecule
experiments also allowed for the investigation of the mechanical strength of S. aureus protein clumping
factor A (ClfA) binding to endothelial cell integrins, i.e., proteins playing a crucial role during sepsis.
As demonstrated, adhesion forces between single bacteria and tested integrins are strongly inhibited
by an anti-αVβ3 antibody, which not only provided additional data on S. aureus virulence, but also has
important implications for the design of new therapeutics against this pathogen [109].

Recently developed fluidic force microscopy (FluidFM) technology can increase the efficiency
of AFM assays in examination of bacteria adhesion [110]. FluidFM opens the possibility to either
extract cellular material or deliver exogenous substances into the cells. Moreover, FluidFM can be
used for single-cell immobilization by creating under pressure transportation, and can be released at
a desired location. Cell fixation by suction allows us to perform whole-cell adhesion measurements
and a combination of both cell fixation and solution insertion by microchannel direct changes to
adhesive properties in whole-cell adhesion measurements. Beaussart et al. established the AFM-based
nanoscopy method to assess antiadhesion activity of multivalent mannofullerenes directed against
E. coli FimH [30]. In this experiment, the thiol bond was used as a linker between the anti-adhesion
compound and AFM tip. Noticeable was the presence of multiple ruptures and plateau events,
demonstrating that the separation of bacteria from the mannose surface leads to the unfolding of pili.
This emphasizes the influence of the experimental set-up on the mechanical response of piliated bacteria.
Additionally, the authors suggested that stretching pili multiple times through FimH-mannose bonds
leads to their denaturation, which decreases the overall adhesion of the cell surface. All of the above
revealed the strong anti-adhesion effects of E. coli to the carbohydrate receptors by glycofullerenes,
which is an encouraging tactic for anti-adhesion-based therapies [30]. Moreover, AFM might be
employed as a platform for quantifying the activity of anti-adhesion compounds directly within
bacterial suspension. Additionally, employment of Beaussart’s nanoscopy method might help with
designs of new anti-adhesion drugs [30,110]. Furthermore, increasing the throughput of single-cell
AFM assays with FluidFM could yield statistically relevant data within a few hours.

High resolution of AFM and its capability to analyze the force signature of single proteins
on single cells also allows for a better understanding of the adherence and virulence factors of C.
albicans, as demonstrated by Formosa et al. [111]. Candida species are considered as opportunistic
pathogens; thus, in order to colonize and propagate in the blood stream they often adhere to various
substrates, mostly those used to build medical devices [111,112]. In a study by Formosa et al., data
were recorded in the quantitative imaging mode (Figure 8), demonstrating that the adhesins at
the cell surface were organized in nanodomains composed of free or aggregated mannoproteins.
Moreover, the authors mention that the cell wall was permanently remodeled as a reaction to the
environment, which made the reproduction of experimental conditions challenging [111]. In addition
to that, combining atomic force microscopy with genetic tools also allowed us to understand the
mechanisms governing the adherence of fungal cells to the abiotic surface in order to initiate biofilm
growth. Using such an approach, Valotteau et al. concluded that EPA proteins, being a family of
lectins mediating the adherence of C. glabrata fungi to host glycans, were simultaneously responsible
for nonspecific hydrophobic and hydrophilic interactions with abiotic surfaces. In this aspect, AFM
was used to quantify the forces between single Candida cells and hydrophobic/hydrophilic substrates.
As demonstrated, silencing of EPA genes had a dramatic effect on surface adhesion, which confirmed
the hypothesis of researchers [113].
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Figure 8. Adhesive properties of C. albicans cells. (A) Height image of a budding C. albicans cell in a
polydimethylsiloxane stamp, and (B) adhesion image corresponding to the height image. In (A), MC
stands for mother cell, BC stands for budding cell, and the red dotted line represents the demarcation
between the two different cells. (C) Height image of a single C. albicans cell exhibiting two bud scars, and
(D) adhesion map corresponding to the height image. Adapted with permission from Elsevier [111].

AFM-based adhesion measurements were also reported to be useful in investigation of
microbe–microbe interactions, which helps to explain the protective effects of some microorganisms
against pathogenic-induced diseases. In this persepective, most recently Meng et al. examined
adhesion-based binding of P. aeruginosa, being a common foodborne and waterborne pathogenic
bacterium, to Geotrichum candidum LG-8, i.e., a fungus isolated from a kefir and used as a probiotic
component [114]. Although in relation to the morphology of bacteria-treated fungus AFM did not
provided any additional data when combining with TEM and SEM, and as such is recognized only as
a complementary technology for surface characterization of fungi associated with bacterial adhesion,
its capability to record alterations in surface roughness was crucial to more deeply assess the mechanism
of bacteria–yeast binding. Notably, the authors detected that bacteria-induced nanoscale changes
in the roughness of the fungal LG-8 surface played a role in assisting the adhesion process [114].
Another study was carried out by Ma et al. and showed the effects of bacteriocins released by
Streptococcus sanguinis on the mechanical properties of C. albicans [115]. S. sanguinis is a well-known
dominant bacteria in healthy human oral cavity, reported to help to exert an antagonistic effect on
C. albicans, thus protecting the oral cavity against fungal-induced disbalance of microbiota. To date, only
some considerable changes in morphology of bacteriocin-treated Candida cells have been reported [116].
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AFM analyses revealed that Young’s modulus of C. albicans was reduced by the presence of S. sanguinis
bacteriocin, resulting in an increase of elasticity and deformation ability. Analogical observation was
noted for adhesion ability, which deceased after treatment with bacteriocins. All of the measurements
were performed with tapping mode [115].

Although the number of research papers focusing on the determination of interactions of viruses
with host cells using AFM is considerably lower than in the case of bacteria or fungi, a few interesting
papers have recently been published. In the first one, Newton et al. established a method to assess the
virus binding to cell surfaces using confocal microscopy combined with AFM, allowing for subsequent
quantification of binding events and observation of them. Overall, this novel approach depends on
probing specific interactions with cells expressing viral cognate receptors with further measurement
of the affinity of this interaction, and may provide some new data on early stages of cell–virus
interactions [117]. In another study, Lin et al. studied the unbinding events of HPV16/anti-HPV16
pairs with AFM [118]. The authors used a functionalized tip to observe the binding/unbinding events
and measure the forces between HPV16 tied to AFM cantilever and anti-HPV16 coating on the surface.
Remarkably, due to this approach the authors could define if the patient had HPV just from the
results of unbinding forces and the distribution of stiffness. In addition, this method was suggested as
beneficial in studies of the possible role among subtypes of HPV in oncogenesis of cervical cancer [118].
Importantly, AFM-based analyses were demonstrated to be highly valuable in the investigation of
mechanisms of infection of cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Yang et al. investigated the binding events of SARS-CoV-2 with angiotensin-converting enzyme 2
(ACE2) receptor, i.e., one of the critical receptors for virus entry into host cells. The authors, through
force-distance curve-based AFM, demonstrated the kinetics and thermodynamics of interactions
between ACE2 and S glycoprotein of SARS-CoV-2 virus, expanding the knowledge about coronavirus
pathogenecitiy and suggesting a strong therapeutic target for COVID-19 treatment [119].

2.4.2. Utility of AFM in Fabrication of Biomaterials with Anti-Adhesive Properties

Adhesion measurements using AFM are also particularly useful during the production of improved
types of materials, for which contamination with microbes with further formation of biofilms of their
surface would be unfavorable or patient endangering. In this regard, Aguayo et al. conducted a study
to assess the early adhesion of C. albicans to dental acrylic surfaces [120]. In another study, Ozel et al.,
due to AFM evaluation of C. albicans and S. mutans’ adherence to provisional crown materials, detected
differences in the surface roughness and chose the appropriate material for clinical introduction.
During the course of the study, the authors observed that microbial colonization is initiated in grooves,
gaps, and recesses on the surface. AFM imaging revealed that more peaks and groves were spotted
in groups with polymethyl methacrylate (PMMA) content, while shallow pits and bulges appeared
in bis-acrylic groups, resulting in the lowest (PMMA) and highest (bis-acrylic group) adhesion [121].
At the same time, Vargas–Blanco et al. used AFM-based methods to focus on coatings for medical
devices that could prevent the attachment of C. albicans [122]. In this study, filastatin, which inhibits
adhesion of C. albicans, was applied on different biomaterials such as bioactive glass, silicone, or dental
resin. Adhesion to these biomaterials was measured by direct visualization of fluorescence the day
after wild-type C. albicans staining and AFM [122].

In terms of implanted biomaterials, the limitation of pathogenic colonization, and, thus,
the decrease of biofilm-derived bacterial and fungal infections, is strongly advantageous. To address
this issue, Alam et al. tested forces between S. aureus bacteria immobilized on the tipless cantilever
and biomaterials such as titanium alloys (Ti-6AL-4V), hydroxyapatite (HA), stainless steel (SS), and
ultra-high molecular weight poly ethylene (UHMWPE), i.e., materials commonly used in the production
of bone implants [44]. The tipless cantilever was coated with PLL for 2 min, then the coated cantilever
was immersed in bacterial suspension, and fluorescence microscopy was performed to confirm that
the single live bacteria was attached to the cantilever. Image analysis indicated that surface energy,
roughness, and wettability played a vital role in bacteria adhesion. Further investigation presented
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UHMWPE and HA to be the best choices in terms of the lowest bacterial adhesion forces. Additionally,
HA was presented as a better bioactive bone replacement material due to its antibacterial properties [44].
Recently, Carniello et al. used the SCFS technique and bacterial-immobilized AFM probes as an
indicator of mechanical stress to investigate how chemical stresses combined with high adhesion
forces between S. aureus and biomaterial surface influence drug resistance-associated gene expression.
The authors concluded that stronger adhesion forces accompanied by the presence of chemical stressors
resulted in upregulation of expression of drug resistance-determining genes. Thus, the development of
biomaterials with anti-adhesive properties would not only serve to decrease biofilm-derived infections
occurrence, but would also limit the spread of microbial drug resistance [123,124]. Most recently,
AFM-based analyses of surface roughness of coating layers established the utility of electrochemical
polymerization-induced poly(3,4-ethylenedioxythiophene) derivative nanohybrid coatings on stainless
steel to obtain anti-fouling and anti-biofilm biomaterial for production of cardiovascular stents and
surgical apparatus [125].

2.4.3. AFM Analysis of Material Surfaces for Industrial Purposes

The utility of atomic force microscope for industrial purposes was also established, particularly
due to its capability to characterize materials’ surface properties such as surface roughness (Ra).
In one study, AFM measurements allowed the authors to compare the changes in water quality and
formation of biofilms in copper, garlanized steel, and plastic pipes used for water distribution systems.
Accordingly, it was concluded that copper and galvanized steel had the highest roughness, whilst the
observed adhesion was highest for galvanized steel but no cell counts were obtained from copper
samples, which might be due to bactericidal effect of copper ions [126]. However, studies have shown
that after a long period of time there is no difference between copper and plastic materials [127,128].
In another study, Assaidi et al. tested the adhesion changes of Legionella pneumophila serogroup 1 and
serogroup 2 to different materials used in water systems [102].

2.4.4. The Employment of Atomic Force Microscopy in the Investigation of Microbial Biofilms

Infections associated with biofilm formation on the surface of implants, medical devices, catheters
or food plates represent a major problem in surgical procedures, infection treatment, and recuperation.
They constitute a serious risk for patients in the hospital environment [129,130]. Thus, limiting
the survival of biofilm-embedded pathogens grants an opening to reduce the number of microbial
infections [131]. To date, AFM-based measurements of adhesion [129], surface roughness [130,132,133],
topography [133–136], nanomechanics [135], and the stiffness of biofilm [137] were succesfully useful
in regard to microbial biofilm investigation. Nevertheless, an ever-growing number of studies has
confirmed that those applications should be extended by examination of biofilm structures and
assessment of biofilm susceptibility to antibiotics.

In one of the studies, Nielsen et al. confirmed using AFM that due to antibacterial features of
isoeugenol, a simple coating of a surface with this essential oil can thwart biofilm formation on stainless
steel and polyethylene surfaces, which may result in reducing the spreading of microbes through
hotspots such as tables, sinks, toilet seats in hospitals, or in homes on chopping boards, and even with
possible applications on medical implants [129]. For this hypothesis testing, the authors used a tipless
cantilever coated with isoeugenol and recorded the retraction forces from bacteria placed in a petri
dish. Additionally, AFM images of uncoated and coated stainless steel were acquired to observe height
and adhesion force [129].

While Nielsen et al. focused on hotspots in the hospital and home environment, Gonçalves et al.
developed antibacterial coatings specifically designed for medical purproses [130]. To that end,
phosphotungstate organically modified silicate (ormosil) was dopped with core-shell nanoparticles
(SiO2@TiO2) and combined in the coating with silver nanoparticles included by photoassisted synthesis.
Surface morphology and roughness Rq measurements before and after irradiation of phosphotungstate
ormosils with silver cation were acquired using AFM working in the tapping mode. The results
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showed that ormosils with silver nanoparticles could achieve eradication of P. aeruginosa and S. aureus,
in contrast to unmodified gold nanoparticles. Moreover, ormosil-modified nanosystems were noted
to easily adhere to indwelling materials without any harmful effects on vascular cells. Notably,
antimicrobial effects of developed nanoformulation remained at least three reutilization cycles in very
aggressive condition, which makes them a promising strategy to develop self-sterilizing materials [130].

Another study by Quatrin et al. assessed the antimicrobial and antibiofilm activities of
nanoemulsions containing Eucalyptus globulus oil against three species of Candida using AFM
topography [134]. Inorganic nanoparticle/teflon-like (CFx) composites were tested as antimicrobial
surfaces by Sprotelli et al. using AFM in the air dynamic mode [132]. AFM studies on Ag-CFx

composite film with incubated Pseudomonas fluorescens compared to the control sample showed
increased surface roughness on the bacterial outer membrane and cells with lower density, which
indicated the anti-bacterial efficiency [132]. Since oral biofilms also represent a challenge in the
treatment of infections, de Souza et al. subjected a dental biofilm to Melaleuca alternifolia (TTO) and
nanoparticles of TTO (NPTTO) and confirmed considerable alterations in the membrane structure of
biofilm-embedded cells using AFM [138].

AFM was also used to detect biofilms formed by anaerobes and atypical mycobacteria isolated
from hospital patients [139]. Recently, nanoresolution of the atomic force microscope and AFM-based
morphological analysis was also reported to be useful in investigation of K. pneumoanie biofilms, notably
by combining AFM with infrared (IR) spectroscopy and spectral imaging, which, overall, allowed for
the collection of data on the composition and distribution of the chemical components of biofilm [140].

While the problem of the growth of fungal biofilms on the surface of materials for both medical
and industrial purposes has been neglected for many years, it can no longer be denied that their
formation causes significant economic losses to the food and health sectors. The issue of food
contamination by fungal biofilms drew the attention of Handorf and colleagues, who aimed to evaluate
the anti-biofilm effects of a microwave-induced plasma torch treated against Candida biofilms [141].
Since conventional methods of biofilm removal, including brushing or mechanical removal of the
biofilm with high-pressure washers, as well as biocide-based treatments, are insufficient, it is extremely
important to combat microorganisms embedded in biofilm with newer methods. In this respect, AFM
is a very valuable tool for studying the morphology and structure of a biofilm [141].

3. Investigation of Bacteria and Fungi Phenotypic and Virulence Features Using AFM

The wide application possibilities of the atomic force microscope, including the ability to
visualize samples and to perform measurements of mechanical properties in the same area of
bacteria, opened new analytical possibilities in the field of microbiological tests and enabled the
assessment of phenotypic features of bacteria and the study of virulence factors. More recently,
Marshal et al., using AFM-based morphological and nanomechanical analysis, identified the surface
properties of bacterial polysaccharide capsules that are required to avoid host-mediated immunity
and determine the virulence of many microbes, including S. pneumoniae and S. mitis, i.e., pathogens
inhabiting the human respiratory tract. Force-volume mapping using AFM combined with biochemical
analyses demonstrated that identical capsular serotypes of bacteria present similar biomechanical
characteristics, independent of bacterial strains, and that might be further translated into data on
virulence phenotypes [142]. Mechanical forces are also crucial for proper peptidoglycan synthases
and hydrolytic enzymes activity and, thus, for mycobacterial cell division as demonstrated by AFM
imaging, nanomechanical mapping, and nanomanipulation combined. This confirms that studying the
molecular mechanisms of bacteria physiology should be performed with subsequent investigation
of physical factors affecting the cells [143]. Considerable morphological and mechanical alterations
were also noted for Burkholderia cenocepacia strains isolated from the patients in different stages of
cystic fibrosis (CF) [144]. To date, it has been established that pathogens associated with long-term
lung infections in CF patients face a spectrum of stressful environmental factors, particularly due to
action of the immune system, antimicrobial therapy employed, or a decrease of oxygen availability,
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resulting in phenotypic diversification of pathogens in terms of antibiotic resistance, biofilm-forming
abilities, and virulence potential [145]. Hassan et al. demonstrated that along with CF progression, the
cell height and shape of B. cenocepacia changes from rods to cocci, which is favorable for the reduction
of the cell surface sensitivity to immune cells due to the smaller ratio surface/volume. This process is
additionally accompanied by a decrease of elasticity modulus, which suggests the essential role of
cell wall nanomechanical features in this adaptation process [144]. Regarding the example of Serratia
marcescens CH-1 cells, Lin et al. also demonstrated that AFM might be a valuable tool to define the
structural arrangement of transmembrane structures on integral prokaryotic bacteria, rather than on
an isolated membrane. Notably, the authors characterized types of membrane pores, providing a
know-how in the investigation of three-dimensional membrane pore structures and their functions on
living prokaryotic cells, which is currently inaccessible by conventional microscopic observations [146].
In another study, Liu et al. used single-molecule force spectroscopy to investigate the interaction
between S. aureus bacteria and the cell wall-binding domain (CBD) of bacteriophage lysins, i.e., specific
peptidoglycan hydrolases mediating the lysis of host bacterium. The performed SMFS analysis not
only provided new data on the binding properties of lysin CBD with bacterium, but also highlighted
the possibility to use it in bacterium detection, as well as a therapeutic target for anti-CBD antibodies.
Particularly, the possibility to develop specific bacteria-targeting antibodies would be advantageous,
since antibodies currently used for S. aureus detection are characterized by a high cost of production
and poor stability [147]. Recently, Iqbal et al. engaged AFM nanoscale and phenotypic analysis of
Yersinia pestis bacteria cultured within soil matrices, being the most important reservoirs for its spread.
Coupling AFM with biochemical profiles of bulk populations using fatty acid methyl ester profiling
(FAME) allowed for a better understanding the persistence of this pathogen within environmental
matrices [148]. Due to AFM analysis, it was possible to better characterize the morphological alterations
of Salmonella bacteria entering the viable but non-culturable state (VBNC) upon exposition to stress
conditions routinely present in food environments, i.e., low temperatures and high concentrations
of sodium chloride [149]. As demonstrated, VBNC bacteria reduced their size and changed the
morphology from bacillary to coccoid. At the same time, no significant alterations were observed
in the presence of acid and oxidant compounds, which provide new data for the purpose of further
improvement of food safety [149].

Regarding the investigation of bacterial spore structure and functioning, a particularly interesting
study was performed by Liu and co-workers [150]. The authors engaged AFM-based SMFS to
investigate the specific interactions between B. subtilis spore’s coat proteins, determining the spores’
resistance to unfavorable environmental conditions and analyzing both unbinding force and kinetic
data in CotE and CotZ proteins. As demonstrated, the morphogenetic protein CotE interacted directly
and specifically with CotZ, resulting in the formation of a stable complex, and this phenomenon was
strongly dependent on the CotE/CotZ ratio. Importantly, the above results not only provided crucial
information on spore cote assembly, which might be translated into the design of improved sporicidal
agents, but also confirmed unique advantages of the AFM/SMFS analysis for characterization of other
coat proteins [150].

4. Physicochemical Characterization of Developed Antimicrobials Using AFM

The possibility of employment of AFM-based measurements for detailed characterization of
material properties in nanoscale allows for the physicochemical evaluation of synthetized compounds.
In this regard, AFM is mostly employed during nanoparticles’ synthesis and development of
nanosystems with a broad spectrum of antimicrobial activity.

Nanoparticles (NPs) and nanosheets have been of interest for many years now, due to the
possibilities in biomedical and industrial technologies [151,152]. The short- and long-term effects
of nanoparticles are still a vastly researched topic [153–156]. The most utilized nanoparticles with
antimicrobial properties are silver nanoparticles, particularly due to the potent bactericidal activity
of silver itself and their relatively low toxicity [157–159]. Nevertheless, a broad spectrum of other
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metal-based nanoparticles, particularly made of cerium (IV) oxide, copper, titanium dioxide, cadmium
sulphide, zinc oxide, and gold, is gaining considerable interest from scientists [78,160–165]. AFM can
be used as an important tool when it comes to analyzing NPs, and topography, height, sorption,
structure, dispersion, and agglomeration can be acquired with AFM [159,162,166,167]. Data can be
acquired with the classical force volume mode or the proprietary quantitative imaging (QI™) mode
of JPK Instruments™, the Peak Force™ tapping mode of Bruker™, or “jumping mode” of Nanotec™.
Additionally, it is a good tool to confirm any bacterial or fungal cell envelope changes occurring upon
treatement with tested nanoparticles [4].

The number of reports presenting the possibility of using AFM in the physicochemical analysis
of the obtained nanoparticles is overwhelming; therefore, only some of the papers that have been
published recently will be cited. One interesting study was made by Lu et al. who approached
it with the idea of changing the alignment of graphene oxide to enhance the antibacterial activity,
and the change of the alignment was confirmed with AFM [168]. Another author also used GrO,
but with directly functionalized tryptamine (TA). The functionalization was confirmed in many ways
including AFM with the use of tapping mode to acquire topographical imaging. The results show
that the addition of TA provided stable antimicrobial coating characterized by low toxicity and high
biocompatibility [169]. Shaheen et al. proposed the large-scale production of silver nanorods via
cellulose nanocrystals. The surface topology, particle size, and overall size distribution was performed
with AFM [170]. Dobrucka et al. also employed AFM for ZnO nanoparticles’ topography, and then
tested them against bacteria and yeast [171].

5. AFM as Novel Tool to Improve Currently Used Diagnostic Methods

Current research into new and improved ways of diagnostics could be enhanced by the use of
AFM [172–174]. Apart from its usefulness as a nanoresolution tool for the evaluation of morphological
changes [4], stiffness alterations [99], and adhesion forces, AFM can also be successfully used for the
detection of bacteria, even at microbial smallest concentrations [175]. Kasas et al. used a microfabricated
200 µm-long AFM cantilever (DNP-10 Bruker) to observe the oscillations of the lever while bacteria
or yeast were attached to it. The lever was functionalized with glutaraldehyde to achieve the best
immobilization efficiency. The authors observed that the living E. coli induced a large fluctuation
of the sensor, and that this was reduced upon 15 min of treatment with ampicillin, as well as with
ciprofloxacin and caspofungin when S. aureus and C. albicans-containing samples were tested, thus
indicating microorganisms’ susceptibility to antibiotic addition. In effect, these observations indicate a
great potential of AFM as a tool for quick MIC/MBC assessment in comparison to standard clinical
microbiology methods [176].

In a similar study carried out by Etayash et al. [175], differences in fluctuations between live and
dead bacteria were detected after attaching bacteria to the lever with the use of the microchannel that
was coated with antimicrobial peptide Leucocin A, in order to selectively interact with bacteria-targeted
receptors. In such a design setting, bacteria were forced to pass through the microfluidic channel,
and then the bacterial adsorption to the surface resulted in changes in the resonance frequency and
cantilever deflection. Furthermore, the excitation of attached bacteria with infrared radiation changed
the cantilever deflection proportionally to infrared absorption by the bacteria inside the channel,
thus creating a nanomechanical infrared spectrum for selective identification. Notably, the resonance
frequency changed depending on the live or dead state of the bacteria, which could be used in testing of
antimicrobial effects. As the authors noted, the measurement could be enhanced by confocal microscopy
to assess cell viability using staining, and, more importantly, the testing might be performed even at
concentrations of a single cell per µL [175].

6. Summary

Imaging at a high resolution is of great importance in biology, since basic life processes occur
at the nanoscales. Due to its advantages such as working in liquid with high resolution on living
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cells, the AFM measurements cannot go unnoticed or seen only as a powerful imaging tool, since
AFM is also able to measure different parameters such as forces, cells’ nanomechanical properties, or
receptors mapping at the cell surface. AFM refines our understanding of microbes’ cell walls, mammals’
cell membranes, and the mechanism of drugs’ actions. AFM technologies are constantly improving.
Certainly, in the coming years we will observe the increased use of AFM in studies with medical
relevance and even more development in AFM technology such as FluidFM, AFM combined with other
microscopy techniques, or maybe even an alternative to the presently used tools for patient diagnosis.
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Piktel, E.; Mystkowska, J.; Janmey, P.A. Susceptibility of microbial cells to the modified PIP 2-binding
sequence of gelsolin anchored on the surface of magnetic nanoparticles. J. Nanobiotechnol. 2019, 17, 81.
[CrossRef] [PubMed]
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