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ABSTRACT Ceragenins, including CSA-13, are cationic antimicrobials that target the
bacterial cell envelope differently than colistin. However, the molecular basis of their action
is not fully understood. Here, we examined the genomic and transcriptome responses by
Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance
of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was
induced in vitro during serial passages with sublethal doses of tested agents. The genomic
and metabolic profiles of the tested isolates were characterized using a combination of
whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by
metabolic mapping of differentially expressed genes using Pathway Tools software. The
exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas
CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional
regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the
arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins,
along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overex-
pressed cell envelope proteins. Furthermore, the L-arginine biosynthesis pathway and
putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In
contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved
in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF),
was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes,
distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin
[colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which
possibly reflects the intensity of the stress exerted by both agents.

IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt
the bacterial cell envelope through different mechanisms. Here, we examined the genomic
and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital patho-
gen, after prolonged exposure to these agents to identify potential resistance mechanisms.
Interestingly, we observed downregulation of genes associated with acid stress response
as well as distinct dysregulation of genes involved in carbon metabolism, resulting in
a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway
(CSA-13). Therefore, we hypothesize that repression of the acid stress response, which
alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials,
could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in
emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell
physiology must be compensated via remodeling carbon and/or amino acid metabolism
to limit acidic by-product production.
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Colistin was one of the first antibiotics discovered and is nearly as old as antimicrobial
therapy. However, its recent reemergence as the “last resort” drug against carbapenem-

resistant bacteria revealed our misunderstanding of its properties, even at the level of
antibiotic susceptibility testing (AST) (1–3).

Colistin is problematic in testing due to the variety and constantly evolving (hetero)
resistance mechanisms and paradoxical effects, such as “skipped well” or species-dependent
increasing/decreasing MICs in the presence of divalent cations (2, 4). Therefore, recent find-
ings connecting resistance to colistin with globally regulated physiological processes, such
as ion homeostasis, membrane potential, respiration, and carbon metabolism, regardless of
lipopolysaccharide (LPS) modification (e.g., by L-Ara4N), are very engaging (5–7). Notably, a
study by Panta et al. demonstrated a universal relationship between colistin activity and
cytoplasmic pH homeostasis, likely mediated by proton and non-proton pump systems
(5). Although the molecular basis of this phenomenon remains to be elucidated, metabolic
processes preventing intracellular alkalization, such as fermentation, are certainly implicated
(5, 7). Remarkably, in this scenario, the proton motive force (PMF) may directly impact inter-
actions between colistin and LPS due to remodeled metabolism (8).

In light of this, the purpose of the present research was to determine whether another
cationic agent, CSA-13, a member of the ceregenin family of antimicrobials, may induce similar
behaviors in bacteria. The properties of ceragenins as broad-spectrum andmicrobicidal agents,
along with their distinctive mode of action unrelated to cross-resistance to other antimicro-
bials, are well acknowledged (9–12). Therefore, it might be assumed that the scope of their ac-
tivity comprises structures or processes universal across bacterial species. The ESKAPE group
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species) pathogen Enterobacter hormaechei of
sequence type 89 (ST89) was used as a target organism. The selection is not coincidental since,
in Poland, it is a growing problem, in particular in the context of carbapenem resistance (13).

RESULTS
Induced resistance to colistin and CSA-13. Induction of resistance in E. hormaechei

strain 4236 to colistin (denoted here as the Eh4236ColR isolate) and CSA-13 (denoted
here as the Eh4236Csa13R isolate) by serial-passage experiments resulted in a high level of
resistance to colistin: i.e., an increase in the MIC for colistin in Eh4236ColR from 0.125 mg/L
to 128 mg/L. In contrast, the final MIC for CSA-13 in Eh4236Csa13R varied between 32 and
64 mg/L compared to the initial MIC of 4 mg/L.

Colistin- and CSA-13-mediated changes at genomic level.Whole-genome sequencing
(WGS) of E. hormaechei 4236 isolates (i.e., the wild type and those with induced resistance
to colistin and CSA-13) allowed for their comparative analysis and identification of genome-
level changes. In detail, the genome of the studied E. hormaechei 4236 strain is composed
of a chromosome (4,689 coding DNA sequences [CDSs]) and one plasmid (129 CDSs).
However, virtually all changes were observed at the level of the chromosome. In detail,
deletion of the 5,028-bp chromosomal region involving themgrB gene, encoding a negative
regulator of the PhoPQ signaling system, which is directly responsible for developing resist-
ance to colistin in Enterobacter cloacae complex and other Gram-negative rods (14, 15), was
present in the Eh4236ColR isolate. In contrast, the genes encoding outer membrane (OM)
protein C (OmpC) and transcriptional regulator SmvR were disrupted by the insertion of pre-
mature stop codons in Eh4236Csa13R. Furthermore, an;28-kb fragment, a putative mobile
element equipped with IS5 transposase and Arm-type integrase utilizing tRNA-Leu as the
integration site, was deleted from the chromosome of this isolate. None of the genes in this
region were previously known to be associated with colistin resistance or to be abnormally
expressed in Eh4236ColR isolate; therefore, this region appears to be irrelevant for the devel-
opment of colistin resistance. The deleted and/or disrupted genes were excluded from the
further transcriptomic analysis (see below).

Colistin and CSA-13 mediated changes at the transcriptomic level. Transcriptome
sequencing (RNA-seq) analysis of E. hormaechei 4236 isolates (i.e., the wild type and those
with induced resistance to colistin and CSA-13) allowed for their comparative analysis and
identification at the transcriptomic level (i.e., differentially expressed genes [DEGs]). In the
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CSA-13-resistant strain, more extensive transcriptional changes were observed, in the
number and variety of DEGs as well as their vitality for the cell. Overall, 6.1% and 2.4% of
the total gene contents, representing multiple categories from ribosomal proteins to
flagellar components (Fig. 1 and Fig. 2), were affected in Eh4236Csa13R and Eh4236ColR,
respectively. In addition, the ratio between up- and downregulated genes—133 (mean,
3.9; range, 2.0- to 26.4-fold change) versus 151 (mean, 3.9; range, 2.0- to 32.4-fold change)—
was similar in Eh4236Csa13R, whereas the overexpressed genes clearly predominated—71
(mean, 10.4; range, 2.0- to 55.8-fold change) versus 40 (mean, 4.6; range, 2.2- to 19.2-fold
change) (P = 0.0024, two-tailed Fisher exact test) genes underexpressed—in the colistin-
treated isolate. Furthermore, both isolates shared 33 upregulated genes. However, their
expression was significantly higher (P = 0.0023; Student’s t test) in Eh23465ColR. On the
contrary, the downregulation level of the 17 shared genes was, in general, more visible
in Eh4236CsaR, with the notable exception of the putrescine-ornithine antiporter (potE-speF)
operon, but statistically irrelevant (see Tables S1 to S4 in the supplemental material). Finally,
metabolic mapping linked the dysregulated genes with 54 pathways (17 superpathways)
and 32 pathways (7 superpathways), in Eh4236Csa13R and Eh4236ColR, respectively (see
Fig. S1 and S2 in the supplemental material). Functional characteristics and statistics of
DEGs are indicated in Fig. S3 to S15 in the supplemental material.

Variation of the cell envelope transcriptome associated with cationic agent resist-
ance. Both tested agents elevated the expression of multiple genes associated with cell
envelope synthesis and turnover (e.g., PBP6 [DacC], LPS assembly protein A [IapA], or

FIG 1 Gene Ontology (GO) categories of the upregulated genes in Eh4236Csa13R (A) and Eh4236ColR (B).

FIG 2 Gene Ontology (GO) categories of the downregulated genes in Eh4236Csa13R (A) and Eh4236ColR (B).
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phosphatidic acid phosphatase [YbjG]), including members of the categories (i) cationic
antimicrobial peptide (CAMP) resistance (ko01503) and (ii) response to antibiotics (GO:0046677).
In the latter group, and in general, the arnABCDEF operon and pagP were the top overex-
pressed genes, with on average 37- and 14-fold changes of expression in the colistin- and
CSA-13-resistant isolates, respectively. In Eh4236ColR, this mechanism is possibly augmented
by the upregulated pagABCD operon (2.6-fold change). In contrast, the downregulation of
phosphoethanolamine transferase (EptB) was an Eh4236Csa13R-specific trait. Furthermore,
both isolates overexpressed multiple members in the categories response to antibiotics
(GO:0046677) and cationic antimicrobial peptide (CAMP) resistance (ko01503), including
outer membrane protein (OmpX), lipoprotein SlyB, undecaprenyl-diphosphatase (YbjG),
and magnesium transporters (MgtA and MgtE), cation-transporting ATPase (CtpF), and
multidrug export protein (MdtEF). Likewise, DedA family transporter (YabI) (16) was upreg-
ulated in Eh4236ColR and Eh4236Csa13R (Fig. 3). Nevertheless, a periplasmic protein, VirK/
YbjX (318 amino acids [aa]) was the most abundantly expressed component of the mem-
brane proteome, approaching the arnABCDEF operon's expression level. Moreover, another
VirK/YbjX variant (326 aa) was also upregulated in both isolates (Fig. 3). Finally, the exposure
to colistin and CSA-13 induced expression of the beta-barrel domain outer membrane (OM)
protein YfaZ, especially in Eh4236ColR (Fig. 3). On the background of this dysregulated pro-
teome, two Big-1 (bacterial immunoglobulin-like domain 1) family proteins are distinguished
by their enormous size: 6,001 aa (29 Ig-like domains) and 3,807 aa (24 Ig-like domains).
Interestingly, although the larger variant of Big-1 was upregulated in both isolates, particularly
in Eh4236Csa13R (5.2-fold change), the smaller Big-1 variant was simultaneously suppressed
to a corresponding degree in this isolate.

Variation of the remaining transcriptome. Significant downregulation of the yjiY
gene (32.4-fold change) in Eh4236Csa13R and overexpression of the yhjX gene (32.6-fold
change) in Eh4236ColR clearly differentiated both isolates. Pyruvate content is a potential
signal of carbon and nitrogen availability inside the cell, and both two-component systems
(TCSs) contribute to the regulation of carbon metabolism and amino acid biosynthesis via

FIG 3 Comparison of the three top overexpressed membrane proteins.
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L-glutamate (17, 18). Therefore, dysregulation of these transporters is possibly linked with a
relatively large number of abnormally expressed genes involved in these processes (Fig. 1
and 2). To demonstrate their possible impact on certain metabolic processes and for clarity,
we address this section in the Discussion.

DISCUSSION

In a series of recent studies, Panta et al. demonstrated that maintaining an acidic cyto-
plasmic pH is essential for colistin resistance and that an alkaline pH acts synergistically with
this polymyxin to suppress resistance in a variety of bacteria, including extremely resistant
species, such as Burkholderia thailandensis and Serratia marcescens (5, 6, 19, 20). This process,
however, may be compensated for by lowering the oxygen concentration (hypoxia) or by
adding fermentable carbohydrates such as glucose, likely through acidifying products of the
metabolic pathways activated under these conditions (5). In addition, the process is presum-
ably mediated by proton and non-proton pump systems, so when the latter pumps are
inhibited by colistin, the cell can only rely on proton pump systems, resulting in a progres-
sive alkalinization of the cytoplasmic pH if is not compensated by an increase in proton
uptake or a switch to hypoxic metabolism or fermentation (5, 21).

Indeed, our transcriptome study of E. hormaechei 4236 strain (ST89) is consistent with
these findings, as both agents dysregulated expression of a number of genes involved in
(i) carbon and (ii) amino acid metabolism, along with (iii) their transport systems, as well as
(iv) proton and non-proton pump systems. Moreover, downregulation in both isolate genes
involved in acid stress response (i.e., the arginine biosynthesis pathway and putrescine-orni-
thine antiporter PotE) suggests pH-related action of both agents, that triggers similar coun-
teracting responses. According to the “alkaline stress” theory, we hypothesize that repression
of the acid stress response, which alkalinizes cytoplasmic pH through amino acid decarbox-
ylation and secretion of H1, may be interpreted as an adaptation that diminishes these proc-
esses under emergency situations invoked by colistin and CSA-13. Consequently, this crucial
cell physiology alteration must be balanced by modifying carbon and/or amino acid metab-
olism to limit the production of acidic by-products. Therefore, different patterns of abnor-
mally expressed genes involved in carbon metabolism in both isolates possibly reflect more
intense stress exerted by CSA-13, which was compensated for by repression of additional
systems related to acid response, such as putrescine-specific H1/symporter PotFGHI and
formate hydrogen lyase (FHL) complex. Ultimately, the expression patterns of carbon and
amino acid metabolism genes suggest that the stress exerted by colistin and CSA-13 was
compensated for by remodeling carbon metabolism toward (i) fermentation of pyruvate
to (R)-acetoin and (ii) glyoxylate pathway (glyoxylate shunt [GS]) supported by upregulated
branched-amino-acid biosynthesis pathways in colistin- and CSA-13-resistant isolates,
respectively (Fig. 4).

The putrescine-ornithine antiporter PotE, encoded in one operon, with ornithine decar-
boxylase SpeF, seems to be the central point in this acid response suppression network. An
acidic environment activates SpeF, which converts L-ornithine to putrescine, consuming pro-
tons and generating membrane potential required for putrescine�ornithine exchange, as
well as provides CO2 for nucleotide synthesis (18, 22). Compared to other Enterobacterales,
putrescine in Enterobacter spp. is produced in abundance (23), and the absence in this genus
of glutamate decarboxylase (GadAB), a key decarboxylase in the Escherichia coli acid resistance
response (24), implicates SpeF as its equivalent. Also, downregulation of the putrescine-specific
H1/symporter PotFGHI in Eh4236Csa13R and upregulation of the spermidine-acetyltransferase
(SpeG), acetylating putrescine to N-acetylputrescine, is possibly a “putrescine-limiting”
mechanism.

Depletion of putrescine as a source of L-glutamate and L-ornithine, along with repression
of L-arginine, L-ornithine, and L-glutamate transporters (e.g., ArgM, ArtJ, and ArtM), is possibly
coupled to downregulated genes involved in L-arginine biosynthesis: i.e., from L-glutamate
via L-ornithine and L-citruline (L-arginine biosynthesis I). Moreover, in Eh4236Csa13R, two
enzymes, ornithine carbamoyltransferase ArgF (EC 2.1.3.3) and carbamoyl phosphate syn-
thase (CPSase) CarA (EC 6.3.4.14), responsible for production of carbamoyl phosphate (CP),
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were repressed. Since CPSase also provides CP for nucleotide/nucleoside biosynthesis (25),
this may explain the downregulation of these genes in this isolate and may be a specific
feature of ceragenin-induced stress (11). In contrast, the production of pyrimidine bases
and D-ribose 5-phosphate appears to be enhanced by upregulated nucleotide 59-mono-
phosphate nucleotidase PnpN (EC 3.2.2.10) in the Eh4236ColR isolate.

Since pyruvate serves as an indicator of carbon and nitrogen availability in the cell (17, 18),
two dysregulated pyruvate transporters, YhjX and YjiY, may link the attenuated acid response
with carbon metabolism. Both transporters are controlled by similar and functionally intercon-
nected pyruvate-sensing two-component systems (TCSs)—PyrSR (regulator of pyruvate reutili-
zation formerly [formerly YpdAB]) belonging to the major facilitator superfamily (MFS) (17),
and BtsSR (formerly YehUT), a CstA-like transporter (18, 26, 27)—but have different affinities
to pyruvate. The BtsSR is a high-affinity receptor (sensing pyruvate at a concentration of
.50 mM), whereas pyruvate concentrations of .600 mM activate the low-affinity protein
PyrSR. Hence, the BtsSR system appears to be important under nutrient-limited conditions,
specifically serine; thus, YjiY is a so-called “carbon starvation” transporter (18). For instance,
the constitutive expression of yjiY that evolved in E. coli C41, a strain optimized for protein
overproduction, possibly represents an adaptation toward efficient nutrient recovery, main-
taining high productivity regardless of the nutrients’ concentration (28). Overall, a cross talk
between these TCSs was proposed as a mechanism ensuring fine-tuned pyruvate reutiliza-
tion (17). Furthermore, PyrSR-mediated repression of other genes, including those involved
in glutamate biosynthesis and arginine degradation, as well as those encoding membrane
and stress proteins, has been recently reported by Miyake et al. (17).

Accordingly, the patterns of abnormally expressed genes involved in pyruvate metab-
olism appear to reflect distinct stress response strategies induced by colistin and CSA-13
(Fig. 4). Specifically, in Eh4236ColR, a tendency to reduce the formation of acidic products
(i.e., formate, acetate, and propionate) was observed, which may explain the attenuation
of the acetate-producing citrate operon. This “deprivation” of compounds driving essential
metabolic pathways is possibly compensated by overexpression of acetolactate decarbox-
ylase BudA (EC 4.1.1.5), which catalyzes pyruvate fermentation to (R)-acetoin, followed by
acetyl coenzyme A (acetyl-CoA) and acetyl aldehyde production, and can be directly

FIG 4 Overview of the metabolic responses of the E. hormaechei 4236 strain to prolonged exposure to colistin and CSA-13.
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incorporated into aerobic and fermentative pathways. Indeed, this strategy of pH homeo-
stasis has been described in Lactobacillus (29), and cloning the acetoin pathway into bacteria
lacking this pathway, such as E. coli, reduces the acidification process through formate
hydrogen lyase (FHL) complex (30). Remarkably, in Eh4236Csa13R, another acetoin synthe-
tase, (S)-acetoin, forming diacetyl reductase (EC 1.1.1.304), and the FHL complex were sub-
stantially downregulated. Furthermore, since acetoin at high concentrations can cause DNA
and protein damage (31), upregulation by Eh4236ColR of universal stress protein A2 (UspA2)
might be a counteractive response.

In contrast, with the CSA13-resistant isolate, formate synthesis appears to be slightly
enhanced under anaerobic conditions by upregulation of formate C-acetyltransferase gly-
cine radical (EC 2.3.1.54), and the most significant change is associated with the repression
of two enzymes: formate dehydrogenase FdhF (EC 1.17.1.9), which oxidizes formate to CO2

and NADH, and formate hydrogen lyase (FHL). The latter is a component of the FHL complex,
a large, membrane-anchored system involving 16 proteins that takes up formate under anaer-
obic/fermentative conditions and acidic pH (32). Notably, none of these 16 genes, downregu-
lated in Eh4236Csa13R, was affected in the colistin-resistant isolate. Moreover, the FHL
complex produces the majority of H1 from glucose fermentation (formate!2 H1 1 CO2,).
The proton gradient generated in this process links the FHL complex with two non-proton
pump systems downregulated in Eh4236Csa13R: i.e., the cytochrome bd-I oxidase subunit
CydX and cytochrome CycA (33). Interestingly, this response interacts with the increased
expression of cytochrome bd under alkaline stress in E. coli, along with the repression of pro-
ton pump respiratory chain complexes to minimize cytoplasmic proton loss during PMF gen-
eration (34). Consequently, the glyoxylate shunt (GS), which reduces the flow of electrons
channeled into respiration during the tricarboxylic acid (TCA) cycle, driven by upregulated
isocitrate lyase (EC 4.1.3.1) and malate synthase A (EC 2.3.3.9), is a potential carbon metabolic
strategy adopted by this isolate. The GS avoids the carbon dioxide-generating stages of TCA
and is the primary pathway under stress conditions, including oxidative, antibiotic, and cold/
heat stresses (35, 36). In addition, the upregulation of the branched-amino-acid biosynthesis
pathway that generates by-products, such as L-glutamate and 2-oxoglutarate, may be an
essential part of metabolic strategy adopted by this isolate. However, an alternative, pH-
related, explanation may be associated with the fact that inhibition of the first enzyme in
this pathway, acetolactate synthase (EC 2.2.1.6), results in intracellular acidification (37).

Clearly, the specific responses of the isolates were associated with a distinct up- or down-
regulation of a number of cell transporters, notably efflux pumps. In general, these changes
are more frequent in the colistin-resistant isolate. Notably, upregulation of the efflux pump
SmvA in Eh4236Csa13 is presumably due to the disruption of its transcriptional repressor
SmvR. SmvA and SmvR have been associated with decreased sensitivity or resistance to
other cationic compounds, such as chlorhexidine and octenidine, in various bacteria (38–40).
In addition, there was a substantial difference between upregulation (in Eh4236ColR) and
downregulation (in Eh4236Csa13) of K1 transporter (KdpABCDE) subunits. In contrast, the
downregulation of the autoinducer-2 ABC transporter and the remaining genes of this
operon (lsrABCRK) was a common but unanticipated characteristic.

Alteration of LPS by L-Ara4N residues, as a mechanism mediated by proton motive force
(PMF)-dependent transporters, should be perceived in light of the aforementioned observa-
tions. In fact, L-Ara4N incorporation into LPS seems to be another physiological response to
acidic stress coordinated by DedA family transporters (5, 6, 19, 41). Indeed, the DedA trans-
porter was overexpressed in both isolates at comparable levels (Fig. 3). In addition, another
dedA gene, encoding a DedA protein variant with 22 additional residues, was upregulated in
Eh4236ColR. Nonetheless, the most overexpressed protein was periplasmic VirK/YbjX (318 aa),
a member of the family of proteins of unknown function (DUF535). Moreover, another VirK/
YbjX variant (326 aa) was also overexpressed in both isolates (Fig. 3). Initially, these proteins
were identified with Shigella flexneri virulence factor VirK (42). However, VirK and YbjX should
rather be perceived as membrane stress chaperons, preventing misfolding and aggregation of
unstructured proteins (43, 44). Interestingly, in Salmonella enterica VirK has been recognized as
essential for resistance to polymyxin B and other CAMPs (45).
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The role of the mutation in Eh4236Csa13R OmpC, one of the key porins, in CSA-13
resistance may be analyzed from many perspectives, such as its role in maintaining mem-
brane asymmetry or in binding Mg21 (46–48). However, the fact that the presence of OmpC
reduces the ability to survive at alkaline pH may be valid in this context (49).

In conclusion, LPS modifications mediated by ArnABCDEF (incorporation of L-Ara4N),
PagP (LPS palmitoylation), or PgaABC (deacetylation of poly-b-1,6-N-acetylglucosamine)
(50, 51), as well as a repressor of the PhoP/PhoQ system MgrB, do not appear to have a cru-
cial role in CSA-13 resistance. Furthermore, E. hormaechei adaptation to the CSA-13-induced
stress was associated with exhaustive quantitative and qualitative transcriptome remodeling,
including even vital ribosomal proteins. Strikingly, multiple membrane stress proteins, such
as the chaperone Skp cold shock protein E (CspE), sigma factor E (RpoE), RseC, Rse, and
RseP, were also downregulated by CSA-13. Subsequently, aberrantly expressed membrane-
associated proteins, such as competence and type VI secretion proteins, as well as various
fimbrial and flagellar components, are potential victims of this repression. Therefore, in
contrast to colistin, the CSA-13-induced stress response of E. hormaechei is characterized
by a more pronounced suppression of the acid stress response, distinctly reprogrammed
metabolism, and disabling of the cell membrane protective systems.

MATERIALS ANDMETHODS
Antimicrobial agents, bacterial strains, and growth conditions. Ceragenin CSA-13 was synthesized as

previously described (52), and colistin was purchased from Sigma-Aldrich (St. Louis, MO, USA); both agents
were solubilized in sterile water (molecular biology grade) (EURx, Poland). The Enterobacter hormaechei iso-
late studied was obtained from the strain collection of the Department of Medical Microbiology and
Nanobiomedical Engineering (Medical University of Bialystok). The bacterial strains were grown from the
freezer stocks (–80°C) on LB agar plates.

Antimicrobial susceptibility testing. The MICs for colistin and CSA-13 were estimated using a broth
microdilution (BMD) method for serial dilutions from 128 to 0.0625 mg/L and a bacterial inoculum of 5 � 105

CFU/mL in cation-adjusted Mueller-Hinton (CAMH) medium (Sigma-Aldrich, USA). Plates were incubated over-
night (18 to 20 h) at 37°C. Escherichia coli ATCC 25922 was used as a quality control (QC) strain.

Induction of resistance in a serial-passage experiment. Subinhibitory concentrations (0.5�MIC) of
CSA-13 and colistin were used to induce resistance through serial passages. Briefly, during each subculture,
the bacterial cells growing at the highest drug concentration were adjusted to an optical density at 600 nm
(OD600) of 0.1 and subjected to the subsequent passage at 18- to 24-h intervals. The experiment was per-
formed for 30 consecutive days until a significant increase in MICs of$3-fold, was obtained. Furthermore, an
additional 10 passages were performed to maintain the effects of induction and mimic prolonged exposure;
however, there was no change in the values of the induced MICs. The experiment was conducted in triplicate
for each compound.

Nucleic acid extraction and sequencing. DNA for WGS was isolated from overnight (;12-h) E. hor-
maechei cultures in LB with a Purify high-molecular-weight DNA kit (Promega) according to the kit protocol.
Long-read sequencing was performed on the MinION apparatus (Oxford Nanopore, England) and using
FlowCell 9.41 and a rapid sequencing kit. Short-read libraries (paired-end 2 � 250 bp) were sequenced in the
Illumina NovaSeq 6000 S4 XP platform. For RNA isolation, overnight E. hormaechei 4236 cultures were diluted
in fresh CAMH broth to an OD600 of 0.1 and incubated at 37°C with shaking (180 rpm) to obtain cultures at an
OD600 of 0.8 to 1.0; then, RNA was isolated from 1 mL of culture using a total RNA kit (A&A Biotechnology,
Poland) according to the kit protocol. RNA samples were stored at280°C. Three biological replicates were per-
formed for the E. hormaechei 4236 wild type and strains resistant to colistin and CSA-13. RNA sequencing was
done using a paired-end 2� 150-bp read length in the Illumina NovaSeq 6000 S4 XP platform.

Sequence processing and data analysis. The hybrid assembly of long and short DNA reads was
performed with Unicycler v.0.4. RNA reads were processed using CLC Genomics Workbench v.21.0.5.
Differentially expressed genes (DEGs) with a fold change of $2.0 and #22.0 and false-discovery rate
(FDR)-adjusted P value of ,0.05 were used for further analyses. Complete genomic sequences of the
tested isolates and RNA-seq reads were deposited in the GenBank and SRA databases, respectively, as
indicated below. Protein functional annotation was performed with eggNOG-mapper v.2 (53), and the
DEGs were matched with metabolic pathways using Pathway Tools v.26.0 (54). Three-dimensional (3D)
structures of proteins were predicted with the AlphaFold tool (55).

Data availability. Complete genomic sequences of the tested isolates and RNA-seq reads were de-
posited in the GenBank (CP104401, CP104402, CP104403, CP104404, CP104405, and CP104406 and BioProject
no. PRJNA877279) and SRA (BioProject no. PRJNA881847) databases, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 5.2 MB.
SUPPLEMENTAL FILE 2, PDF file, 1 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.1 MB.
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