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Abstract: Antimicrobial resistance is a major and growing global problem and new approaches to
combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing
attention has been paid to nanomedicine, which has great potential in the development of controlled
systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes.
There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles
containing antimicrobial agents attached to their surface (core shell nanosystems), which offer
unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial
activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and
the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic
interactions within metallic nanoparticles by functionalizing their surface with appropriate agents,
defining the core structure of metallic nanoparticles and their use in combination therapy to fight
infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control
their toxicity in future medical applications are also discussed, as well as their ability to induce
resistance and their effects on the host microbiome.

Keywords: antibiotic resistance; metallic nanoparticles; synergy; biocompatibility; modulation of
antimicrobial activity

1. Introduction

Antimicrobial resistance (AMR) is a natural phenomenon that occurs when microor-
ganisms are exposed to antimicrobial agents [1]. The speed of this natural process has
been drastically affected by the use of antibiotics not only in medicine, but also in other
sectors. The list of causes of increasing antibiotic resistance includes: (i) excessive use
of antimicrobials in veterinary medicine/agriculture, where the addition of antibiotics
to feed for farm animals not only ensures the prevention of intestinal infections but also
results in improved absorption of nutrients and, thus, faster weight gain while causing the
selection and development of bacterial strains with mechanisms of resistance and further
release of these strains into the environment [2], (ii) over-use of antimicrobials due to the
over-prescription of antibiotics (approximately 90% of all antibiotic prescriptions are issued
by general practitioners and respiratory infections are the main reason for prescribing
them, however, they are mainly caused by viruses) [3], (iii) improper selection of doses,
which prevents the complete elimination of pathogens, which then favors changes in
gene expression, increased mutagenesis or horizontal gene transfer and, thus, increasing
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resistance to antibiotics and the spread of these strains, especially in the hospital environ-
ment [4,5], (iv) the duration of antibiotic therapy, with a longer duration of therapy being
associated with an increased risk of antimicrobial resistance [6]. Due to the overuse of
antimicrobials in veterinary medicine [7], inappropriate use of antibiotics resulting from
a lack of knowledge on the principles of rational antibiotic therapy [3], biofilm formation
by pathogenic microorganisms [8], an increasing number of infections with multidrug-
resistant strains (MDR) has been observed [9], making antimicrobial resistance one of the
biggest public health challenges of our time [10,11]. A report published by the Centers for
Disease Control (CDC) indicates the highest number of infections in United States caused by
drug-resistant Streptococcus pneumoniae with 900,000 cases, followed by 550,000 infections
caused by drug-resistant Neisseria gonorrhoeae, and in third place were 448,400 infections
caused by drug-resistant Campylobacter [12]. Importantly, it is estimated by World Health
Organization (WHO) that the drug resistance of microorganisms is already responsible for
at least 700,000 deaths each year, including 230,000 people dying from multidrug-resistant
tuberculosis [13]. The seriousness of the problem in the treatment of infectious diseases
is evidenced by analyses conducted by scientists, who predict that by the end of 2050,
untreatable infections will be the most common cause of death, causing more than 10
million deaths per year, overtaking cancer and cardiovascular diseases [14].

The problem of increasing resistance is a growing concern as the number of new
antibiotics approved since the late 1970s has declined [15]. Evidently, the propensity of
microbes to develop resistance occurs much faster than the ability of humans to develop
new agents; therefore, new antimicrobial compounds are being sought and nanomaterials
appear to be a promising alternative to conventional antimicrobials due to their unique
physical and chemical properties [16,17].

Nanotechnology is the science of materials/devices defined by size (the nanoscale
range is 1–100 nm in one dimension). The term nanotechnology was introduced by Ameri-
can physicist and Nobel Prize winner Richard Feynman in 1959 during a lecture entitled
“There’s Plenty of Room at the Bottom”. Dr. Richard Feynman considered some of the
consequences of the possibility of manipulating matter on the atomic scale and mentioned
the ability to create nanoscale machines [18]. Fifteen years later, the term “nanotechnology”
was defined by Professor Norio Taniguchi from Tokyo Science University in the 1974 paper:
‘Nano-technology’ mainly consists of the processing of, separation, consolidation, and
deformation of materials by one atom or by one molecule” [19].

A steadily increasing number of reports indicate that nanomaterials may be also
developed as alternative to currently used antibiotics and antifungal drugs [20]. Nano-
materials, among which four categories can be distinguished, depend on their material
type. (i) The first group includes carbon-based nanomaterials such as fullerenes, carbon
nanotubes, graphene and its derivatives, graphene oxide, nanodiamonds, or carbon-based
quantum dots [21]. In their pure state, most carbon-based nanomaterials have limited
antimicrobial capacity and show low selective toxicity against bacteria over mammalian
cells. By modifying their physicochemical properties, their antimicrobial activity and
targeting efficiency can be modulated [22] through surface functionalization to modulate
physicochemical parameters or modification of their synthesis methods [23] (using co-
valent and non-covalent modification, among others [24]). In addition, to improve the
water solubility and dispersion of carbon-based nanomaterials, surfactants and polymer
are used to increase both the probability of contact and the strength of interaction with
bacteria [25]. In order to enhance antibacterial efficacy, carbon-based nanomaterials are
functionalized with functional groups and bioactive molecules [26]. The second group
represents (ii) inorganic-based nanomaterials consisting of metal (e.g., Au, Ag, Pt) [27],
metal oxide NPs (nanoparticles) (e.g., TiO2, MnO, ZnO) and semiconductors such as silicon
and ceramics [28]. Inorganic-based nanomaterials are of great interest due to a number
of features such as optical properties including surface plasmon resonance (SPR) with
the ability to control optical field, the possibility to modify the surface of nanoparticles
to control solubility, stability and interaction with the environment (it is possible, among
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other things, to increase the circulation time of NPs by reducing non-specific uptake by the
mononuclear phagocyte system), mechanisms of action quite different from those described
for traditional antibiotics, irrespective of the pathogen resistance mechanism, synthetic
versatility, which allows the control of their size, shape and surface properties, surface
functionalization of NPs with an appropriate functional groups for the labelling, targeting
and conjugation of pharmacological molecules, synthesis by simple, cost-effective, and
easy methods [29–34]. Another negative trait of inorganic-based nanomaterials is their
toxicity, which can be modulated by changing the shape and size of the particles and
modifying their surface, leading to nanoparticles with desired properties but without toxic
effects [35,36]. The third group represents (iii) organic-based nanomaterials which include
molecules made of organic material as cationic polymers NPs, solid lipid NPs, lipid NPs,
biomimetic NPs, dendrimer nanoparticles or protein-based NPs [37]. A key advantage of
organic-based nanomaterials NPs is the tunability of the lipid layer, which can be further
functionalized to produce nanomaterials with the desired properties. In addition, they
have advantageous characteristics such as chemical diversity, high loading capacity and
intrinsic biodegradability [38] and biocompatibility [39,40]. However, compared to inor-
ganic materials, they are less stable by nature, especially at higher temperatures [41], and
the presence of potential problems related to immunogenicity and challenges in loading
of a wide variety of drugs [42] or poor mechanical and processing properties or insolu-
bility in common organic solvents [43]. The last group represents (iv) composite-based
nanomaterials that are comprised of two or more components at the nanoscale where
mutual contact interfaces occur between the individual components. Composites can be
any combination of metal, carbon, or organic based-NMs (nanomaterials) with any form of
metal or polymer materials [44]. The advantages of composite-based nanomaterials include
the film uniformity, biocompatibility, available hydroxyl and carboxyl groups or amines,
improve physical properties of ions and their releasing, possibility of functionalizing the
surface, environmental stability, simple doping process or tunable conductivity [45,46]. The
disadvantages of these nanomaterials include uncertain cytotoxicity, component stability,
long-term stability, structural integrity, mechanical and corrosion properties or the tendency
of nanomaterials to agglomerate [47,48]. From among the above-mentioned categories, the
most promising are metallic nanoparticles, which show strong antimicrobial activity both
against planktonic bacteria and in biofilm form in a large number of studies, which is why
this review focuses on metallic NPs.

Due to their unique physicochemical properties such as (i) a large surface to the vol-
ume ratio, (ii) the ability to functionalize with diagnostic and therapeutic factors, (iii) ease
of modification of the method of synthesis, (iv) antibacterial and immunomodulatory
properties [49–55], nanoparticles are of growing interest in medicine. It is noteworthy that
due to the nanometer scale size and appropriate surface charge, a strong interaction of
nanoparticles with the biological membranes of the pathogen is possible [56,57]. More-
over, in respect of their relatively low potential to induce drug resistance [58,59], metal
nanoparticles are proposed as an alternative to antimicrobial agents. They are also receiving
increasing recognition as highly effective drug carriers [60].

The mechanism of action of metallic nanoparticles includes, among others: (i) dis-
ruption of the cell walls, thus, increasing their permeability as a result of electrostatic
interaction between negatively charged molecules of the cell wall of the microorganism
and positively charged nanoparticles resulting in a leakage of cytoplasmic contents [61,62]
and causing membrane potential disorder [63]; (ii) another mechanism comprises of the
generation of toxic Reactive Oxygen Species (ROS). Oxidative stress leads to oxidation
of glutathione, disrupting the antioxidant defense mechanisms of bacteria against ROS.
The excessive production of ROS causes disturbances in redox homeostasis, which results
in oxidative stress, thus, affecting the membrane lipids and modifies DNA as well as the
protein structure [61,64]; (iii) a further mechanism involves the binding to intracellular
components among other things, causing damaged DNA, proteins and inhibition of the
enzymatic activity [65]. The interaction of metallic nanoparticles with DNA can denature
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or shear the DNA and disrupt cell division [66,67]. In addition, metallic NPs can inhibit
protein synthesis by denaturing ribosomes [68]. As a result of the additive effect of the
above factors, (iv) apoptotic cell death eventually occurs [69]. A schematic representation
of the different mechanisms of nanoparticles action is illustrated in Figure 1.
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Figure 1. The main mechanisms of antimicrobial activity of metal nanoparticles include: (1) disruption
of the pathogen cell wall resulting in increased permeability, (2) generation of ROS disrupting redox
homeostasis and damaging cellular structures, (3) binding to intracellular structures causing their
dysfunction.

Here, we provide a throughfall characterization and discussion of the latest achieve-
ments in synthesis and design of metallic nanoparticles and metallic nanoparticle-based
nanosystems as potent antimicrobials with the potential to be used for the treatment of
drug-resistant bacterial and fungal infections.

2. Synergistic Effects of Metallic Nanoparticles

Over the past few decades, antibiotic-resistant bacteria have become increasingly
prevalent; the number of infections caused by multidrug-resistant (MDR) bacteria is in-
creasing and the risk of untreatable infections is rising [70].

Among metallic nanoparticles, silver (Ag), gold (Au), copper oxide (CuO), iron oxide
(Fe3O4) titanium oxide (TiO2) or zinc oxide (ZnO) are commonly used as antimicrobial
agents after their strong antimicrobial activity is well known [16,71]. There are many
studies showing that various metal and metal oxide nanoparticles exhibit biocidal activity
against gram-positive and gram-negative bacteria, fungi or viruses [72]. A key influence
on the antimicrobial properties of metallic NPs is their high specific surface area high
surface-to-volume ratio and nanoscale size, which allows strong interaction with the
membranes of micro-organisms causing its disruption, penetration into cells followed
by damage to internal cellular structures ultimately leading to the cell death [52]. The
mechanisms associated with metallic nanoparticles ability to overcome antibiotic resistance
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involved their unique physicochemical properties enabling the exploitation of multiple
novel bactericidal pathways to achieve antimicrobial activity [73]. Due to the binding
between metal ions and microbials’ biomolecules, which is generally non-specific, metallic
nanoparticles exhibit a broad spectrum of activity [74]. Specific metal ions such as iron,
zinc or copper are essential for the biochemistry of life in all organisms, and their deficiency
can cause damage to the structure of cell membranes and DNA or disrupt enzymatic
functions [75]. However, an excess of these ions or the presence of other, less essential ions
such as gold or silver can be lethal to pathogens’ cells. Released from the extracellular
space, metal ions are able to enter the cell and disrupt biological processes where, inside
the cell, they can induce the production of ROS and affect cellular structures by disrupting
cellular functions as a result of forming strong coordination bonds with nitrogen, oxygen
and sulfur atoms, which are abundant in organic compounds and biomolecules [61].

Due to the increasing prevalence of microbial resistance, combinations of nanoparticles
and antimicrobials have been shown to possess superior efficacy compared to antimicrobials
alone [76–78]. Such combinations can reduce the development of antimicrobial resistance
as well as shorten the duration and dose requirements of antimicrobial treatment [79,80].
The use of combination therapy is common in clinical practice for many reasons, including:
(i) the prevention of antimicrobial resistance [81], (ii) antimicrobials can mutually enhance
antimicrobial activity [77], (iii) when a critically ill patient is admitted with suspected sepsis
of unknown etiology, several antimicrobials are used to broaden the spectrum against
unknown pathogenic species [82,83], (iv) killing bacteria in a dormant state [84].

Based on the type of components that comprise the combination of metallic nanoparti-
cles, they can be divided into several categories: (i) monometallic nanoparticles, (ii) metallic
nanoparticles in combination with conventional antibiotics/fungicides or compounds other
than antimicrobial agents, (iii) multimetallic nanoparticles alone and (iv) in combination
with antibiotics/fungicides, (v) metallic nanoparticles, whose surface has been further
functionalized with antibiotics/fungicides or compounds other than antimicrobial agents.
The functionalization of metallic NPs surfaces with the desired compound utilizes various
types of covalent and non-covalent bonds—these include electrostatic forces, hydrogen
bonds and van der Waals interactions, resulting in the integration of a variety of organic and
inorganic molecules at the nanoscale [85]. In order to form covalent and non-covalent bonds
between ligands and NPs surfaces, a number of linker molecules are used, such as organic
materials, within which various polymers (polyethylene glycol (PEG), polyvinyl alcohol
(PVA), chitosan, dextran, alginate, polyacrylic acid, citrates, phosphates, amines [86]) or
inorganic substances (metals and metal oxides, silicas [87–89]) are used. The non-covalent
functionalization approach is based on a large number of weak interactions such as ionic
interactions, van der Walls, hydrophobic interactions, electrostatic interactions, hydrogen
bonds that are applied to metallic and silica nanoparticles [90–92]. The advantages of using
non-covalent modifications include the simplicity and lack of influence on the structures
of the particles used and their interaction with docked biological substances, while the
disadvantage is that non-covalent interactions are easily influenced by factors such as
pH or ionic strength [93]. The surface modification of NPs using covalent bonds can be
achieved using a number of alternative approaches, depending on the composition of the
NPs [94–96] by means of modifications at several levels using sequential functionalization,
so that structures with multiple functions can be obtained [97,98].

2.1. Monometallic Nanoparticles

Monometallic NPs consist of a single metal species, which, depending on the atomic
type and properties, may exist in various forms such as metallic, magnetic, transition
metal and oxide. Monometallic NPs are the most popular inorganic nanoparticles, which
represent a promising solution in the fight against resistance to traditional antibiotics,
not only because of their completely different mechanisms of action from commonly
used antibiotics, showing activity against bacteria that have developed resistance, but
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also because they target many biomolecules that impede the development of resistant
strains [99].

Among monometallic NPs, silver and gold nanoparticles are leading the way. Silver
NPs are of great interest as antimicrobial agents due to their exceptional antimicrobial
activity against a broad spectrum of pathogenic microorganisms [100,101]. Within the
antimicrobial action of silver nanoparticles, three main mechanisms of action can be dis-
tinguished: firstly, the interaction and penetration of nanoparticles into the membrane
of microorganisms [102], which results in protein inactivation and membrane lipid per-
oxidation, leading to structural modification of membrane integrity, transport protein
dysfunction and leakage of cellular contents [103,104]. Secondly, there is damage to intrin-
sic structures, which triggers ROS generation, leading to the disruption of redox hemostasis,
affecting the Na+/K+ ATPase pump and signal transduction pathways [105]. As a result
of the interaction of ions and nanoparticles with DNA, protein inactivation occurs, ulti-
mately leading to cell death [106]. Thirdly, there is the release of Ag+ ions (whose rate of
release depends largely on the size, shape, concentration, capping agent or colloidal state
of NPs [107,108]), which occurs in parallel with the other two, which, due to their size and
charge, can interact with cell components to alter metabolic pathways and even genetic
material [109,110]. It is also important to keep in mind the type of bacterial species that
respond differently to the activity of Ag NPs, which is caused by the different composition
and thickness of the cell wall [111].

Gold nanoparticles (AuNPs) are one of the most important nanoparticles due to their
simple and controlled synthesis, inertness, biocompatibility and low toxicity compared with
other nanomaterials. Gold nanoparticles, such as silver nanoparticles, disrupt the integrity
and structure of the cell membrane, causing leakage of intracellular components [112–114].
It can be compared to apoptosis-like cell death, where gold nanoparticles cause depolariza-
tion of the bacterial cell membrane and a continuous increase in the concentration of calcium
ions in the cytoplasm, induction of DNA fragmentation, resulting in apoptosis-like death
(overexpression of caspase-subunit proteins was observed as well) [115]. Additionally,
membrane potential is altered and ATP synthase activity is reduced, resulting in metabolic
dysfunction [116]. On the other hand, our studies with gold nanoparticles coated with
ceragenin CSA-131 confirmed that cell membrane depolarization and cytoplasmic protein
leakage occur when ESCAPE strains are targeted [117] (Figure 2 adopted from [117]).

The interaction of Au NPs with intracellular biomolecules results in translation inhibi-
tion [118]. The antimicrobial mechanism of Au NPs also involves an increase in intracellular
ROS levels [119]. Additionally, our previous results show that gold nanoparticles display
antibiofilm activity against Candida by reducing pathogen cell adhesion, resulting in the
inhibition of biofilm growth. Interestingly, peanut shaped gold nanoparticles were found
to reduce the viscosity of the biofilm formed by Pseudomonas, which may be important
in the case of cystic fibrosis where thick mucus are formed, making it difficult for antimi-
crobial agents to penetrate and subsequently eradicate the pathogens causing infection.
(Figures 3 and 4 from [120,121] respectively).
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Xen 30 (A), Klebsiella pneumoniae ATCC 700603 (C), Pseudomonas aeruginosa LESB58 (E), was assessed
using the 3,3′-dipropylthiadicarbocyanine iodide (diSC(3)) assay, where bacterial cells were treated
with gold nanosystems functionalized with ceragenin CSA-131 with rod-shaped (AuR NP@CSA-
131), peanut-shaped (AuP NP@CSA-131), and star-shaped (AuS NP@CSA-131) metal cores and free
ceragenin CSA-131. The release of cytoplasmic proteins from the bacteria Staphylococcus aureus Xen
30 (B), Klebsiella pneumoniae ATCC 700603 (D), Pseudomonas aeruginosa LESB58 (F), treated with AuR
NP@CSA-131, AuP NP@CSA-131, AuS NP@CSA-131 and CSA-131 was assessed using the Bradford
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mean ± SD, n = 3; * indicates statistical significance at p ≤ 0.05, ** ≤0.01, and *** ≤0.001. Adapted
from Pharmaceutics [117].
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Among other factors, antimicrobial activity is strongly influenced by the shape [107]
and size [122] of nanoparticles, even for nanoparticles with the same surface-to-volume
ratio. Typically, nanoparticles of smaller size have higher antimicrobial activity [123,124],
but there are reports that larger nanoparticles are more effective, which may suggest
that size alone is not the most important factor in their activity and toxicity [125] and,
thus, it can be hypothesized that with certain metallic NP systems, antimicrobial activity
may be largely controlled by the extent of electrostatic interactions with the microbial
cell wall. In order to verify this hypothesis indicating shape influence on the activity
of metallic nanoparticles, metallic NPs in different shapes were synthesized, then their
antimicrobial activity was evaluated. Cheon et al. [126] synthesized Ag NPs with spherical,
triangular plate and disk shapes in aqueous solution. Based on the zone of bacterial
growth inhibition, the highest antibacterial activity was recorded for spherical Ag NPs,
followed by disc shaped Ag NPs, while the lowest activity was recorded for triangular
plate Ag NPs. The difference in antimicrobial activity of these Ag NPs was explained by the
release rate of Ag ions from the surface. In another study by El-Zahry et al. [127] spherical,
triangular and hexagonal Ag NPs of the same size were synthetized by chemical reduction.
The results of this work show that hexagonal Ag NPs exhibit the highest antimicrobial
activity compared to spherical and triangular NPs, which is associated with a larger surface
area, allowing a stronger antimicrobial effect. In our research with metallic nanoparticles,
we also observed shape-dependent activity of Au NPs. For ceragenin-containing gold
nanoparticles in the shape of rods (AuR NPs@CSA-131), peanuts (AuP NPs@CSA-131) and
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stars (AuS NPs@CSA-131), the antimicrobial activity of peanut-shaped gold nanoparticles
was lower compared to those in rod and star shapes [117]. Another important factor
governing the antimicrobial activity of NPs is their charge. Positively charged metallic
nanoparticles are able to alter the function of the electron transport chain in bacteria,
leading to the neutralization of the surface electrical charge of the bacterial membrane
and altering its permeability, ultimately causing bacterial death [128]. However, there are
some discrepancies regarding the activity of metallic nanoparticles against gram-positive
and gram-negative bacteria. Some researchers reported that gram-positive bacteria are
more sensitive to nanoparticles, due to the fact that the cell wall structure of gram-negative
bacteria is more complex [129]. On the opposite side, researchers believe that gram-negative
bacteria are more susceptible to antibacterial Ag nanoparticles due to the easier passage of
Ag ions through the thinner cell walls [130].

The activity of metallic nanoparticles can be modulated by doping with suitable
compounds, such as transition metals. Singh et al. evaluated how the antimicrobial
activity of ZnO NPs doped with Fe, and CdS doped with Fe and Co would change. The
results showed that Fe-doped ZnO nanoparticles exhibited decreased antibacterial activity
against gram-negative bacteria, which could be due to the decrease in the positive surface
charge carried by the nanoparticles, and also the change in the surface morphology of
ZnO nanoparticles as a result of Fe doping, while Fe atom-doped CdS NPs increased
the antibacterial activity of the nanoparticles with no change in the activity of cobalt-
doped CdS NPs [131]. As a result of the doping of metallic nanoparticles with transition
metals, changes in the NPs’ charge and size were observed, which is a key factor in their
antimicrobial activity. An increase in the antimicrobial activity of copper ferrite NPs doped
with nickel [132] or Mg-doped ZnO nanoparticles [133] was also observed. In one of our
studies, magnetic nanoparticles functionalized with gold displayed strong bacteriostatic
activity against Pseudomonas aeruginosa. We assumed that the gold present on the surface of
magnetic nanoparticles interacts with bacterial proteins through disulfide bonds, which
can have a significant impact on the microbial cells metabolism and redox system of [134].

The antimicrobial properties of metallic nanoparticles can be improved by increasing
the solubility of nanoparticles in aqueous media. By synthesizing silver nanoparticles
using an aqueous solution of an extract from the plant Pulicaria glutinosa, it was determined
how the solubility of Ag NPs affects their activity. The results indicate that with the in-
crease in the solubility of silver nanoparticles obtained by increasing the concentration of
the plant extract used for the synthesis (from 4% to 21%), a decrease in the values of the
half maximal inhibitory concentration were observed against Escherichia coli, Pseudomonas
aeruginosa, Staphylococcus aureus and Micrococcus luteus strains [135]. Although metallic
nanoparticles exhibit high antimicrobial activity to effectively combat pathogens, their
inherent characteristic of low solubility causes a significant loss of antimicrobial capacity
and leads to increased toxicity [136], where solubility determines many important proper-
ties of nanoparticles, including their surface area, which makes it possible to control the
interaction between nanoparticles and microorganisms [136].
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viscosity η0 and infinity-shear viscosity η∞ determined from the viscosity curves; (C) compliance 
as a function of time in creep-recovery tests; (D) mean maximal creep compliance values (at 30 s Jt 
= 30 s) and the ratio of difference between Jt = 30 s and unrecovered creep compliance (at 90 s Jt = 90 
s) to maximal creep compliance calculated from creep-recovery curves. * indicates statistical signif-
icance (p < 0.05) compared to untreated control. Infection and Drug Resistance 2022:15 851-871. 
Originally published by  and used with permission from Dove Medical Press Ltd. [121]. 
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difference in antimicrobial activity of these Ag NPs was explained by the release rate of 
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Figure 4. Rheological properties of Pseudomonas aeruginosa biofilm under the influence of N-acetyl-
cysteine (NAC) and peanut-shaped gold nanoparticles (AuP NPs): (A) dynamic viscosity as a function
of shear rate for control samples, and samples treated with tested compounds; (B) zero-shear viscosity
η0 and infinity-shear viscosity η∞ determined from the viscosity curves; (C) compliance as a function
of time in creep-recovery tests; (D) mean maximal creep compliance values (at 30 s Jt = 30 s) and the
ratio of difference between Jt = 30 s and unrecovered creep compliance (at 90 s Jt = 90 s) to maximal
creep compliance calculated from creep-recovery curves. * indicates statistical significance (p < 0.05)
compared to untreated control. Infection and Drug Resistance 2022:15 851-871. Originally published
by and used with permission from Dove Medical Press Ltd. [121].

The activity of metallic nanoparticles can also be governed by modulating their sur-
face to improve their functionality as antimicrobial compounds. By functionalizing the
surface of iron oxide nanoparticles with L-tyrosine, a significant difference in antimicro-
bial activity was observed between nanoparticles whose surface was modified, compared
with non-functionalized iron oxide nanoparticles [137]. For the non-functionalized iron
oxide nanoparticles, no antimicrobial activity was observed against Staphylococcus aureus
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and Salmonella typhimurium, whereas the functionalized iron oxide nanoparticles showed
antimicrobial activity against these strains, as a result of the formation by L-tyrosine func-
tionalization of more stable NPs with different functional groups on the surface, providing
a better binding interaction with microorganisms [138]. Nijonshuti et al. [139] compared
the activity of Ag NPs and Ag NPs whose surface was functionalized with polydopamine
(PDA). The results indicated that the PDA coating acted in synergy with Ag NPs, sig-
nificantly increasing the potency of Ag NPs against bacteria, and suggest that higher
valence/oxidation state increases the antimicrobial potency of Ag [140] and coordination
between Ag and PDA mainly through the catechol group, which may play an important
role in regulating the antimicrobial activity of PDA-Ag NPs [141]. In our study, as a re-
sult of the functionalization of the surface of gold nanoparticles with a cationic steroid
antimicrobial (CSA), we obtained enhanced antimicrobial activity against gram-positive
bacteria, gram-negative bacteria, and fungi, regardless of the resistance mechanism, as well
as against microorganisms both in planktonic form and growing in biofilm as a result of
the permeabilization of the cell membrane and release of protein content and generation of
ROS [117,119,142]. Similarly, in the case of magnetic nanoparticles that were functionalized
with compounds such as PBP10 peptide, 1,4-dihydropyridine, ceragenin, LL-37, chlorhex-
idine, increased antimicrobial activity of the functionalized nanoparticles was obtained
compared with nanoparticles alone and compounds in the free form [143–147].

The antimicrobial activity of metallic nanoparticles is influenced by their method of
synthesis. In a study by Garibo et al., silver nanoparticles synthesized by green synthesis
using an extract from Lysiloma acapulcensis possessed higher antimicrobial potency than
chemically produced Ag NPs. Antimicrobial activity was determined using the disk dif-
fusion method and minimal inhibitory concentrations (MICs) and minimal bactericidal
concentrations (MBCs) against four clinical strains: Escherichia coli, Pseudomonas aeruginosa,
Staphylococcus aureus and Candida albicans. Both a larger zone of inhibition and lower MICs
and MBCs of biogenic Ag NPs were observed in comparison with Ag NPs synthesized by
the chemical method [148]. In the case of the study provided by Ghetas et al. the antimi-
crobial activity of biologically synthesized Ag NPs using an extract from Origanum vulgare
and Ag NPs synthesized chemically was assessed. Using the disk-diffusion method, their
activity against Streptococcus agalactiae, Aeromonas hydrophila, Vibrio alginolyticus, Aspergillus
flavus, Fusarium moniliforme, Candida albicans was determined. Against both bacteria and
fungi, the zone of growth inhibition and, thus, the antimicrobial activity was higher for
biologically synthesized Ag NPs than for chemically synthesized Ag NPs [149]. Moham-
mad Musawi-Khattat et al. observed that besides higher antimicrobial activity of Ag NPs
synthesized by green synthesis method compared to chemically synthesized Ag NPs, they
also exhibited more desirable characteristics and biological activities such as narrow size
range, spherical shape, high antioxidant and DNA cleavage activity [150]. Also in the case
of gold nanoparticles, the green synthesis method results in higher antifungal activity and
smaller size of the resulting nanoparticles compared to the chemical synthesis method [151].
Similarly, biosynthesized titanium and iron oxide nanoparticles were observed to have
higher antimicrobial activity compared to chemically synthesized nanoparticles [152,153].
On the other hand, zinc nanoparticles synthesized by the chemical method had high ther-
mal stability compared to ZnO NPs synthesized by the green synthesis method, while the
antimicrobial activity was insignificantly higher for ZnO NPs prepared by the chemical
method over by the green synthesis at 50 and 100 ppm, but no difference at 150 ppm
against Pseudomonas aeruginosa and Bacillus subtilis with comparable activity against Staphy-
lococcus aureus [154]. Recent studies on the antimicrobial activity of monometallic NPs are
summarized in Table 1.
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Table 1. Antimicrobial activity of monometallic NPs. Abbreviations: Au, gold; Ag, silver; Fe3O4, iron (II, III) oxide; Pd, palladium; TiO2, titanium dioxide; ZnO, zinc
oxide; Se, selenium.

NPs Size (nm) Synthesis Pathogens Mechanism of Action Reference

Au ~37–53 (AuR), ~55–65 (AuP),
~243 (AuR) Chemical reduction

Staphylococcus aureus, Staphylococcus
epidermidis, Klebsiella pneumoniae,

Klebsiella oxytoca, Pseudomonas aeruginosa

Induction of oxidative stress, increase of
cellular membranes permeability, cell

membrane depolarization, protein leakage
from the bacteria, destruction of pathogen’s

membranes

[117]

Au ~37–53 Chemical reduction

Candida glabrata, Candida krusei, Candida
albicans, Aspergillus fumigatus, Aspergillus
flavus, Cladosporium herbarum, Fusarium

oxysporum

disrupt the outer fungal membrane and
increased permeability of Candida cells, the
release of proteins from damaged Candida

cells, ROS generation

[120]

Ag ~11–18 Green sythesis (plant) Staphylococcus aureus
Disruption of membrane integrity and

permeability, membrane depolarization,
decline in efflux pump activity

[155]

Ag ~15–37 Green sythesis (plant) Ralstonia solanacearum, Xanthomonas
axonopodis pv. punicae

Generation of ROS, disruption of replication
and DNA damage [156]

Fe3O4 ~9 Co-precipitate methods Escherichia coli, Pseudomonas aeruginosa,
Staphylococcus aureus, Candida albicans

Nonspecific interaction with membrane
compounds, disorganization of lipid

packing in the membrane of the
microorganism, disruption of transport
across the membrane, disruption of cell

division

[157]

Pd 13–18 Biosynthesis (plant)

Staphylococcus auerus, Streptococcus
pyogenes, Bacillus subtilis, Enterobacter

aerogenes, Klebsiella pneumoniae, Proteus
vulgaris

The cell membrane destruction and cell
apoptosis [158]

TiO2 2–23 Laser ablation in liquid Escherichia coli, Pseudomonas aeruginosa,
Proteus vulgaris, Staphylococcus aureus

The interaction between NPs and the cell
wall of the microorganism, leading to the

microorganism oxidation and finally death
[159]
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Table 1. Cont.

NPs Size (nm) Synthesis Pathogens Mechanism of Action Reference

ZnO 15–30 Biosynthesis (plant)

Staphylococcus aureus, Pseudomonas
aeruginosa, Escherichia coli, Aspergillus

niger, Aspergillus flavus, Aspergillus
fumigates

The production of ROS leading to DNA
damaging, denaturation of proteins, rupture

of enzymes, and depletion in antioxidant
glutathione level causing the cell death

[160]

Se ~110 Biosynthesis (cow urine)
Staphylococcus aureus, Escherichia coli,

Klebsiella pneumoniae; Pseudomonas spp.,
Serratia marcescens, Proteus mirabilis

The generation of ROS and proteins
denaturation [161]

Se ~55 Biosynthesis (plant) Bacillus subtilis, Escherichia coli
The cell wall destruction, inhibiting cell wall

synthesis or inactivating other cellular
processes

[162]
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2.2. Metallic Nanoparticles in Combination with Antibiotics

Due to the antimicrobial activity possessed by metallic nanoparticles, they can overcome
resistance mechanisms such as: (i) reduced permeability of bacterial cells, (ii) enzymatic modifi-
cations of antimicrobial substance, (iii) modification within target sites/enzymes, (iv) active
removal of antimicrobials by overexpression of scavenger pumps to escape the antimi-
crobial effect of antimicrobials, or (v) overexpression of an enzyme inactivated by an
antimicrobial [163–165]. Additionally, the coupling of metallic nanoparticles with antibi-
otics shows synergistic effects against bacteria in planktonic, as well as biofilm forms or
also against multidrug resistant strains [166,167]. When combined with optimally selected
antibiotics, nanoparticles exhibit synergy and in the future may contribute to the reduction
of the global crisis of emerging microbial resistance [168]. The benefit of this combination
is an increase in antibiotic or fungicidal activity due to a synergistic effect, resulting in a
faster antimicrobial action and, thus, reducing the possibility of the emergence of resistant
microorganisms, as well as an antimicrobial action against biofilm-forming pathogens and
an increase in the penetration of antimicrobial agents into cells and tissues [169]. It is also
worth pointing out that metallic nanoparticles do not have much potential for the induction
of microorganisms resistance [58,142] and that antibiotic resistance is of little relevance
to nanoparticles, because the action of nanoparticles takes place through direct contact
with the cell walls of pathogens without the need to penetrate microbial cells, or use of the
specific pathogen’s targets that might be modified by microbes in response to presence of
nanoparticles [170].

Although broad-spectrum antibiotics and antifungal agents play a very important
role in the control of bacterial and fungal infections, they also have a disadvantageous
side to their use, namely, the selection and spread of resistance among many bacterial and
fungal species and the deleterious effect they can have on the host microbiome [1,171–173].
Problems related to conventional antimicrobial therapy also include, but are not limited to, a
narrow spectrum of antimicrobial activity, where the agent used is directed at a well-defined
target of infection, or problems related to the safety and tolerability of the antimicrobial
agent, which can cause harmful side effects such as toxicity or allergic reactions [174,175].
One of the major limitations of conventional antimicrobial therapy is also the inefficient
delivery of drugs, where they may be non-specifically distributed in the body causing
systemic side effects. In addition, there may be problems related to drug absorption
and metabolism [176]. By increasing the potency of antibiotics by combining them with
nanoparticles, it is possible to shorten the duration of treatment, reducing the concentration
of administered drug to the patient, resulting in, among other things, in decreased systemic
toxicity [177].

Colistin is considered as an antibiotic of last line of defense for the control of infections
of some pathogens such as Pseudomonas aeruginosa resistant to all commonly used antimi-
crobial drugs. However, due to the dose-dependent side effects of colistin, the possibility
of bacteria treating using colistin and seeking same therapeutic effect, but at a lower dose,
is being sought. To achieve these goals, silver nanoparticles have been used in combination
with colistin by Khaled et al. [178]. Additionally, the synergism of imipenem with Ag
NPs was investigated. The synergistic effect of antibiotics with silver nanoparticles was
determined against pandrug-resistant Acinetobacter baumannii. The results obtained indicate
a synergistic effect leading to a reduction in the MIC values of colistin, imipenem and silver
nanoparticles where a more than fourfold reduction was observed. Due to the synergistic
effect of metallic nanoparticles with an antimicrobial agent, it is possible to target not only
planktonic cells, but also cells growing within biofilm structure. Our research also confirms
the synergism between metallic nanoparticles and antibiotics. As a result of the combination
of the classical antibiotics such as vancomycin and colistin, synthetic ceragenins CSA-13 and
CSA-131 and the human antimicrobial peptide cathelicidin LL-37 with core-shell magnetic
nanoparticles against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa,
an additive or synergistic effect was observed, as well as a strong suppression of biofilm
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formation. The interaction of magnetic nanoparticles with bacterial cell wall compounds
results in increased insertion and/or uptake of membrane-active agents such as colistin or
vancomycin, destruction of the membrane and leakage of intracellular contents, as well as
induction of oxidative stress by the magnetic nanoparticles, causing damage to bacteria cell’
organelles [179]. Also, in the case of the combination of gold nanoparticles with tobramycin
against tobramycin-resistant strains of Pseudomonas aeruginosa, a strong combinatorial ef-
fect of nanoparticles with an antibiotic was achieved, enabling the reduction of biofilm
formation and, thus, increasing the effectiveness of antimicrobial therapies [121].

As a result of the combination of silver nanoparticles with amphotericin B and flu-
conazole, Ag NPs showed a synergistic effect with amphotericin B and fluconazole against
biofilms formed by Candida albicans. As a consequence penetration of silver nanoparti-
cles through the cell membrane due to their small size, the integrity of the membrane is
disrupted, resulting in easy passage of drugs through the cell membrane leading to their
action at the target site [180]. The metallic nanoparticles also showed high activity against
fungal spores. Silver nanoparticles were synthesized by green synthesis using agro-waste
material, strawberry leaf as reducing agents and completely large germination inhibition
of Botrytis cinerea spores at 100 ppm as a result of the increased density of the solution,
causing cohesion/sticking of the fungal hyphae [181]. In addition to the search for syner-
gistic interactions between metallic nanoparticles and antimicrobial or fungicidal agents,
other potential compounds are being explored to enhance the antimicrobial activity of the
metallic nanoparticle-factor A complex. An example of this is the study by Al-Tawarah et al.
of a synergistic interaction between silver nanoparticles and the essential oil of Varthemia
iphionoides. The results showed a significant increase in antimicrobial activity of Ag NPs
complex with essential oil against multi-drug resistant strains of Enterobacter aerogenes,
Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus. The Ag NPs
resulted in an increase in surface area, leading to greater surface contact with the bacteria
and, thus, improved bactericidal activity, perforation and lysis of the bacterial cell wall,
followed by generation of free radicals and DNA breakdown [182]. On the other hand,
Abdelsattar et al. [183] evaluated the synergistic effect of silver nanoparticles with ZCSE2
phage against Salmonella enteritidis. Synergistically treating bacteria with a sublethal dose
of Ag NPs enabled them to be readily lysed by phages even at low concentrations. As a
result of the combination of Ag NPs and phages, a new prospect of nanoparticles with
greatly improved antibacterial properties and therapeutic efficacy appeared.

Recent work on the synergistic effect of metallic nanoparticles in combination with
antibiotics/fungicides and compounds other than antimicrobial agents is shown in Table 2.
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Table 2. Antimicrobial activity of metallic NPs in combination with conventional antibiotics/fungicides or compounds other than antimicrobial agents. Abbreviations:
Ni, nickel; Cu, Copper; Zn, zinc; AZI, azithromycin; GEN, gentamycin; OXA, oxacillin; CEFO, cefotaxime; NEO, neomycin; AMP, ampicillin; SUL, sulbactam;
CEFU, cefuroxime; FOS, fosfomycin; CHL, chloramphenicol; OXY, oxytetracycline; ERY, erythromycin; CEP, cephacothin; CLI, clindamycin; TET, tetracycline; AMO,
amoxycillin; CIP, ciprofloxacin; CEFP, cefpodoxime; CEFI, cefixime; KET, ketoconazole; STR, streptomycin, AMB, amphotericin B; FLU, fluconazole; PVA, polyvinyl
alcohol; PAH, polyallylamine hydrochloride; H2O2, hydrogen peroxide; NAC, N-acetyl-cysteine; TOB, tobramycin.

NPs Size (nm) Synthesis Pathogens Mechanism of Action Reference

Ag NPs, ZnO NPs in
combination with: AZI, GEN,

OXA, CEFO, NEO,
AMP/SUL, CEFU, FOS, CHL,

OXY

15–16 (Ag NPs), 187–188
(ZnO NPs) biosynthesis (plant)

Staphylococcus aureus,
Salmonella enterica subsp.
Bukuru, Escherichia coli,

Candida albicans

The electrostatic interaction between
positively charged nanoparticles and

negatively charged bacterial cell, release of
ions, disruption the cellular respiratory
chain, inhibition of unwinding of DNA,

the ROS generation

[77]

Ag NPs in combination with:
ERY, AMP, CHL, CEP, CLI,

TET, GEN, AMO, CIP, CEFP,
CEFU

~26 chemical reduction

Staphylococcus aureus,
Streptococcus mutans,
Streptococcus oralis,

Streptococcus gordonii,
Enterococcus faecalis,

Escherichia coli, Aggregatibacter
actinomycetemcomitans,
Pseudomonas aeruginosa

The attachment to the bacterial cell
membrane and pore formation, interacting

with intracellular biomolecules such as
DNA, cause inhibition of DNA replication

leading to the cell death, disruption the
respiratory chain, transport of hydrophilic

antibiotics to the cell surface

[166]

Ag NPs, Ni NPs, Cu NPs, Zn
NPs in combination with:

CEFI
~17−41 chemical reduction,

biosynthesis (plants) Salmonella typhi

Change in the membrane permeability,
ROS generation, ATP depletion, DNA

damage and disruption, interaction with
sulfur and phosphorus-containing

molecules

[184]

Ag NPs in combination with:
KET 11–19 chemical reduction Malassezia furfur

The attachment and anchoring to the
surface of the fungus, ROS generation,

leading to structural changes and damage,
such as permeability and the membrane
potential, forming pores causing leakage

of various substances, disrupting the
activity of respiratory chain enzymes

[185]
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Table 2. Cont.

NPs Size (nm) Synthesis Pathogens Mechanism of Action Reference

Ag NPs in combination with:
STR, AMB, FLU 11–15 biogenic synthesis

Pseudomonas aeruginosa,
Escherichia coli, Klebsiella

pneumoniae, Bacillus cereus,
Candida albicans, Candida

glabrata

The interaction with the bacterial cell wall,
membrane damage, destruction the proton

pump, blocking the metabolism and
respiration, pores that disrupt the

membrane electrical potential, ROS
generation, DNA damage, depletion of

glutathione, lipid peroxidation, release of
Ag+ ions, translation inhibition

[186]

Au NPs in combination with:
colicin 35–70 green method Klebsiella pneumoniae No data [187]

PVA@Ag NPs and PAH@Ag
NPs in combination with:

H2O2

11–15 (PAH@Ag NPs)
17–26 (PVA@Ag NPs) chemical reduction Escherichia coli, Staphylococcus

aureus

The electrostatic interaction with the
bacterial cell wall, ROS generation,

disruption of bacterial cell membrane
[188]

Ag NPs in combination with:
ebselen 2–24 biosynthesis (microbes and

plant)
Escherichia coli, Staphylococcus

aureus
The ROS generation, interruption of

bacterial antioxidant system [189]

ZnO NPs in combination
with guava leaf extract 15–30 chemical reduction Escherichia coli No data [190]

Au NPs in combination with:
NAC, TOB

~44 (spherical NPs), ~60
(rod-shaped NPs, ~144

(star-shaped NPs)
chemical reduction Pseudomonas aeruginosa

Induction of oxidative stress leading to
subsequent permeabilization of microbial
membranes and leakage of intracellular

contents

[121]



Int. J. Mol. Sci. 2023, 24, 2104 18 of 44

2.3. Multimetallic Nanoparticles

Multimetallic NPs are nanoparticles composed of at least two different metals that
form alloy or core-shells nanostructures. Multimetallic nanoparticles are of growing interest
due to an increased spectrum of properties compared to monometallic NPs [191]. The bacte-
ricidal mechanism of action of multimetallic nanoparticles is usually related to the release of
metal ions and the induction of oxidative stress, while non-oxidative mechanisms may also
take place [191]. The joined action of various metals and metallic oxides in chemical trans-
formation results in enhanced catalytic performance of multimetallic nanoparticles [192].
With regard to the synergistic effects between various metals, multimetallic NPs with
bimetallic, ternary and quaternary combinations exhibit special features with improved
chemical, optical and catalytic performance compared to mono- and bimetallic NPs [193].

By using a combination of metal compounds, it is possible to obtain synergistic
antimicrobial properties of the newly synthesized compound compared to the properties
of the individual components used alone. The antimicrobial activity of silver nanoparticles
involves the anchoring and penetration of NPs in the bacterial cell wall while once inside
the cell, they contribute to the formation of free radicals, generating intracellular oxidative
stress and ultimately leading to cell death [194]. On the other hand, iron can interact with
amino acids present in bacterial cell wall proteins, including the -SH groups of cysteine. The
thiol side chain of cysteine has been shown to be the most susceptible to electron capture
from oxidative species [195]. By synthesizing bimetallic silver and iron nanoparticles,
Padilla-Cruz et al. [196] suggest that the mechanism of synergistic action of the two metals
involved oxidation of the thiol side chains in cysteine leads to changes in protein structure,
resulting in an increase in bacterial cell wall permeability and ultimately cell death (iron
was responsible for this effect). As a result of the increased permeability of the cell wall,
there is an increased influx of bimetallic nanoparticles into the cell. Eventually, with the
release of silver ions into the cytoplasm, oxidative stress is induced, causing DNA changes
and disruption of membrane morphology. In this way, synergistically acting silver and
iron contribute to the destruction of cell structures, disruption of intracellular biological
functions leading to cell death. In another study, Zhao et al. [197] noted that monometallic
gold (Au), rhodium (Rh) and ruthenium (Ru) NPs did not cause disruption of bacteria cell
structures of Escherichia coli, bacterial membranes treated with monometallic NPs had no
visible damage. In contrast, the application of bimetallic gold- rhodium (Au-Rh) NPs and
gold- ruthenium (Au-Ru) NPs caused significant changes in the cell membrane structure-
cell membrane was dramatically ruffled and severely damaged, thus, can induce bacterial
cell lysis, leading to leakage of cell substrates and bacterial death. The mechanism of action
of the bimetallic nanoparticles also included a decrease in bacterial membrane potential
and an increase in ATP and ROS levels. The above results suggest that monometallic
nanoparticles (Au, Rh and Ru NPs) exhibit lower antimicrobial activity under the given
experimental conditions (they do not cause noticeable changes in the cell membrane),
compared to bi-metallic nanoparticles (Au-Rh and Au-Ru NPs), significant changes in the
bacterial cell membrane were observed as a result of synergistic action of their constituent
metals. Moreover, the application of bimetallic silver-platinum (Ag-Pt) NPs [198] not only
killed the bacteria, but also limited their growth by reducing the density of bacteria, which
shows that they are bacteriostatic agents; stopping bacteria from reproducing. The activity
of multi-metallic nanoparticles covers a broad spectrum, not only against Gram-positive
and Gram-negative bacteria, but also against multidrug resistant fungi such as Candida
auris. Exposure of fungal cells to trimetallic silver-copper-cobalt (Ag-Cu-Co) NPs [199]
influenced the level of apoptosis markers, manifested by phosphatidylserine translocation
and collapse of mitochondrial membrane potential. The nanoparticles resulted in a direct
inhibition of the cell cycle, arresting cells in the G2/M phase.
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Some bacterial species have a remarkable ability to adapt to the administration of
antibiotics by developing resistance mechanisms such as Mycobacterium tuberculosis, which
is made possible by the rapid export of drugs from the cytosol. One of the targets of the
silver and zinc oxide nanoparticles is to weaken the stability of the membrane, resulting
in an increase in its permeability to antibiotics [200,201]. The use by Ellis et al. [202] of
bimetallic nanoparticles in pulmonary delivery of antitubercular drugs to the endosomal
system of Mycobacterium tuberculosis-infected macrophages in combination with rifampicin
resulted in an increase in the potency of the antibiotic by as much as 76%, causing a decrease
in the integrity of the Mycobacterium tuberculosis cell envelope due to the interaction of
bimetallic nanoparticles with the mycobacterial envelope, which is reflected in an increase
in its permeability. Due to this interaction, an increased penetration of rifampicin into
the cytosol of the bacteria is possible, which results in an enhanced potency of the drug.
The use of multi-metallic nanoparticles proved to be an effective drug delivery vehicle
that can be used to transport TB drugs, among others, while increasing the potency of the
drug [202].

Most bacterial infections are associated with biofilm formation, where the microbial
cells that make up the biofilm structure have been shown to be 10–1000 times more resis-
tant to antibiotics than planktonic cells [203]. As a result, it is necessary to develop new
bactericides that can effectively combat biofilm-associated infections. One example of such
agents represents the silver-platinum nanohybrids synthesized by Ranpariya et al. [204],
which significantly inhibited bacterial biofilm formation and exhibited strong antimicrobial
synergy when combined with antibiotics such as streptomycin, rifampicin, chlorampheni-
col, novobiocin, and ampicillin against strains of Escherichia coli, Pseudomonas aeruginosa,
and Staphylococcus aureus. For example, they found that rifampicin activity in the presence
of Ag-ZnO NPs increased as much as 15-fold against Staphylococcus aureus, while Ag-ZnO
NPs inhibited biofilm against Escherichia coli and Pseudomonas aeruginosa by about 76%.
Bimetallic nanoparticles Ag-Au NPs synthesized by the core-shell method [205] showed
synergistic antimicrobial activity of bimetallic nanoparticles conjugated with doxycycline
against Pseudomonas aeruginosa and Escherichia coli, where the combinatorial effect led to
higher drug binding affinity and enhanced antimicrobial efficacy. Synergy of antibiotic
with bimetallic nanoparticles may be the current approach with the most promise for the
significant improvement of patients treatment with complicated skin infections.

Recent studies on the antimicrobial activity of multi-metallic NPs are summarized
in Table 3. Quadrometallic nanoparticles, such as silver-copper-platinum-palladium (Ag-
Cu-Pt-Pd) [206] or silver-platinum-gold-palladium (Ag-Pt-Au-Pd) [207], are also being
synthesized, but so far no studies have been conducted on the antimicrobial properties of
quadrometallic nanoparticles.

As a result of the generation of reactive oxygen species, the antioxidant defense system
is disrupted, which leads to mechanical damage to the cell membrane. A large number of
studies on multimetallic nanoparticles describe their mechanism of action as the adhesion
of multimetallic NPs to microbial cells and destruction of the cell wall by interaction
between the positively charged surface of multimetallic NPs and the negatively charged
surfaces of pathogen cells, leading to the generation of ROS, the penetration of multimetallic
NPs into the cell, causing damage to proteins and DNA, as well as oxidative stress [191].
Considering the wide spectrum of action of multimetallic nanoparticles, and the diversity
of their mechanisms of action against pathogens, including multidrug-resistant strains,
they may prove to be an effective tool to combat infections.
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Table 3. Antimicrobial activity of multimetallic NPs. Abbreviations: Pt, platinum; CdO, cadmium (II) oxide; NiO, nickel(II) oxide; Fe2O3, iron(III) oxide; CuO,
copper(II) oxide.

NPs Size (nm) Synthesis Pathogens Mechanism of Action Reference

Au-Pt 1–3 chemical reduction
(Turkevich method)

Candida albicans; Pseudomonas
aeruginosa; Staphylococcus

aureus
ROS generation [208]

Ag-Au 3–40 chemical reduction Xanthomonas oryzae;
Magnaporthe grisea

The damage the bacterial cell wall and
release of metal ions [209]

Ag-Cu and Cu-Zn 80 (Ag-Cu), 100 (Cu-Zn) biosynthesis (plant)

Alcaligenes faecalis,
Staphylococcus aureus,

Citrobacter freundii, Klebsiella
pneumoniae, Clostridium

perfringens

ROS generation [210]

Au-Pt-Ag 35–40 biosynthesis (plant)

Staphylococcus aureus,
Enterococcus faecalis,

Escherichia coli, Candida
albicans

Interaction with cell membranes
(membrane disruption, changes in its

permeability); ROS generation,
inactivation of some enzymes; destruction
of microbial DNA/RNA; lysis of microbial

cells

[211]

CdO-NiO-Fe2O3 ~7–28 self-combustion method

Escherichia coli, Pseudomonas
aeruginosa, Moraxella

catarrhalis, Staphylococcus
aureus

The ROS generation, release of
heavy-metal ions, interaction of

nanoparticles with the cell wall of bacteria
[212]

CuO-NiO-ZnO 5–9 co-precipitation method Escherichia coli, Staphylococcus
aureus

The interaction between nanoparticles and
bacterial cell wall. The bacterial cells are
ruptured and cracked with the release of

intracellular components

[213]

Ag-ZnO-TiO 80–140 sol-gel method Escherichia coli

The inhibition the enzymes for ATP
hydrolysis and expression of ribosomal

proteins by hindering DNA replication of
bacteria and ROS generation

[214]
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2.4. Metallic Nanoparticles as Carriers for Molecules with Antimicrobial Activity

Metallic nanoparticles have great potential in medicine as carriers of small molecules
such as drugs, genes, proteins, and enzymes [215–217]. The efficacy of some antibiotics can
be enhanced by increasing the cell permeability or weakening the cell envelope, therefore,
when metal nanoparticles are combined with antibiotics, they can show better efficacy
in certain therapies by reducing the side effects associated with individual drug [218].
Functionalization of antimicrobial agents with nanoparticles is one of the strategies used to
enhance the efficacy of drugs against pathogens.

Functionalization of metallic nanoparticles with antimicrobial agents enables strong
antimicrobial activity as a result of enhanced ability to penetrate biological membranes.
Penetration of hydrophobic antimicrobials is limited by the highly polar environment
within bacterial membranes, which impairs their activity [73]. Metallic nanoparticles
interact with the bacterial cell membrane through electrostatic, hydrophobic, receptor-
ligand interactions or van Der Waals forces, leading to a change in the cell membrane
potential and bacterial integrity [219,220]. Due to the high surface-to-volume ratio and
the possibility of loading the metallic NPs onto the surface with a high concentration of
antimicrobial agent, increased permeability towards the biological membrane or higher
uptake by the bacterial cell, the effective delivered concentration of antimicrobial agent
is increased [221,222]. As a result of the increased porosity of the pathogen’s structure,
antibiotic molecules conjugated with metallic NPs gained easy access to the bacterial cell.
The hypothesis proposed by Shaikh et al. is that conjugation on the surface of nanoparticles
can result in increased concentrations of the administered antibiotic, which is able to
saturate antibiotic-degrading enzymes and inhibit the growth of resistant bacterial strains
containing degrading enzymes [222]. On the other hand, Sreedharan et al. proposed a
hypothesis regarding the increased permeation of ciprofloxacin (AuF NPs@ciprofloxacin)
bound on the surface of gold nanorods by: (i) the binding of AuF NPs@ciprofloxacin to
the cell wall or membrane of the microorganism resulting in the release of carried drug
within the cell wall or membrane or (ii) the nanoparticle-antibiotic complex binds to the
bacterial cell wall that may serve as a reserve for the continuous release of the antibiotic,
which could then penetrate into the microorganisms [223]. In addition, efflux pumps,
whose activity is increased in antibiotic-resistant bacterial cells, play an important role in
multidrug resistance, whereby antimicrobials are actively transported outside the bacterial
cells [224]. As a result of the functionalization of metallic nanoparticles with agents with
antimicrobial activity, it is possible to block the efflux pump, increasing the accumulation
of antibiotics inside bacterial cells [225]. Brown et al. showed that gold nanoparticles
functionalized with ampicillin were observed to block the efflux pump and the multivalent
presentation of ampicillin were the reason for the more effective action of the functionalized
gold nanoparticles versus the antibiotic compared with the antibiotic alone [226].

Another advantage of the functionalization of metallic nanoparticles is the improved
stability of the metallic NPs-antimicrobial agent. Higher stability and antimicrobial activity
under conditions such as room temperature, UV exposure or heat stress (increasing temper-
ature up to 90 ◦C) was reported for the conjugate of Au NPs with ampicillin, streptomycin
and kanamycin compared to the free forms of the antibiotics (except for Au NPs@ampicillin,
where at room temperature the conjugated ampicillin was precipitated out of solution) [227].
Metallic nanoparticles are also a good carrier, providing high antimicrobial peptide (AMP)
activity in the presence of proteases and enzymes [228]. The stability of metallic nanoparti-
cles in different buffer solutions and biological fluids such as water, Dulbecco phosphate
buffered saline (DPBS, in different pH range) in various concentrations of NaCl and in
the presence of fetal bovine serum confirms that they are a promising approach in drug
delivery [229].
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An important aspect of antimicrobial drug delivery based on metallic nanoparticles is
the improvement in the pharmacokinetic properties of the drug in the form of increased
solubility of poorly soluble drugs, prolonged drug half-life and systemic circulation time,
as well as prolonged and stimulus-controlled drug release, resulting in lower dosage and
drug frequency, reducing the toxic effect of the drug [163]. By functionalizing the surface of
metallic nanoparticles with antimicrobial agents, it is possible to overcome their poor solu-
bility and aggregation in solution, thereby achieving an increase in antimicrobial efficacy
and a decrease in cytotoxicity [230,231]. Metallic nanoparticles as carriers for antimicrobial
agents can protect drugs from premature degradation and sustain drug release in order
to result in prolonged half-life and bioavailability [232]. The conjugation of gentamicin
with gold nanoparticles confirms that metallic nanoparticles are a very good carrier for
continuous release of the antibiotic over a few days, making it possible to reduce the num-
ber of administrations [233]. By coupling antimicrobial agents to metallic nanoparticles,
it is also possible to improve antimicrobial properties and overcome resistance mecha-
nisms among microorganisms. Our research confirms that metallic nanoparticles are an
effective carrier for antimicrobial agents. When conjugated to gold nanoparticles with
ceragenins, they show higher antimicrobial activity against both multidrug-resistant strains
regardless of resistance mechanism [117], strains causing otitis media [119] and fungal
strains [142]. In addition, the magnetic nanoparticles prove to be a very good carrier for
the PBP10 peptide, which shows good antimicrobial activity against both planktonic and
biofilm forming of bacteria and fungi [143]. Also, the conjugation of 1,4-dihydropyridine
on the surface of magnetic nanoparticles significantly increases antimicrobial activity com-
pared to nanoparticles alone which is due, among other things, to the high affinity of
the nanosystems for microbial cell wall components, while antimicrobial activity is still
high in the presence of human body fluids such as serum, saliva, cerebrospinal fluid or
abdominal fluid [144]. A microorganism that is originally resistant to a given antimicrobial
agent becomes susceptible to the nanosystems conjugated with metallic nanoparticles.
Carbapenem-resistant Acinetobacter baumannii was found to be sensitive to conjugated Ag
NPs with imipenem [234], where were observed (i) reversal of drug resistance by protecting
the β-ring of carbapenem from hydrolysis by metallo-β-lactamases (MBLs) through zinc
ion chelation of MBLs, resulting in the deactivation of MBLs, and (ii) enhanced antibacterial
efficacy with increased production of reactive oxygen species and membrane damage,
(iii) effects on cell wall formation and metabolic pathways, as well as the downregulation
of ompA gene expression, which can mediate fibronectin-mediated attachment to host
cells and induce the biofilm formation. Despite the presence of beta-lactamase and car-
bapenemase resistance genes in Acinetobacter baumannii, the combination of AgNPs with
imipenem is effective antimicrobial agent against carbapenem-resistant strains, showing
potent antimicrobial activity [235]. Ampicillin-resistant Escherichia coli also proved to be
sensitive after exposure to ampicillin-conjugated gold nanoparticles, where an accumu-
lation of Au NPs@ampicillin on the bacterial cell surface was observed, resulting in the
formation of pores in the bacterial membrane, allowing the nanoparticles to penetrate the
interior of pathogen cells [236]. The results obtained by Memarian et al. confirm that the
fluconazole-resistant strain became sensitive to Au NPs@fluconazole. The MIC value for
fluconazole alone was 64 µg/mL, while that for the tested nanosystem was 2 µg/mL [237].
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Another advantage of functionalizing metallic nanoparticles with antimicrobial agents
is the reduction of toxic effects where using nanoparticles as carriers for drug delivery
not only improves efficacy, but it also enables a reduction in adverse effects compared to
conventional therapy. Functionalization of gold nanoparticles with ciprofloxacin resulted
in lower hemolytic activity of Au NPs@ciprofloxacin than the antibiotic in free form thereby
reducing the toxicity of the antibiotic [238]. Similarly, conjugation of amphotericin B (AMB),
which exhibits nephrotoxicity due to its poor water solubility and aggregation on the surface
of gold nanoparticles allowed the negative effects to be reduced, resulting in a water-soluble
covalent gold nanoparticle conjugate with AmB with increased antimicrobial efficacy and
reduced cytotoxicity [230]. Our studies also confirmed that conjugated ceragenins, peptide
LL-37 chlorhexidine and polyene antibiotics (amphotericin B and nystatin) on the surface
of magnetic nanoparticles showed not only lower toxicity, but also increased antimicrobial
activity compared with antimicrobial agents in a free form, which is a very promising
approach to reduce the side effects of conventional therapies and increase the success of
therapies [145–147,239].

By functionalizing metallic nanoparticles with specific antibodies, it is possible to
obtain a system that might serve for rapid identification of the pathogens and target
treatment to combat infection. Gold and silver nanoparticles conjugated with antibodies
specific for Staphylococcus aureus peptidoglycan are proving to be a promising treatment
method, which can be used alone or in addition to existing conventional antibiotic therapy
to achieve complete eradication of the pathogen by means of which extended and selective
bacterial death can be achieved [240–242]. Also, the conjugation of antibodies to protein A
on the surface of gold nanoparticles both in vitro and in vivo in a mouse model resulted in
a significant reduction in the viability of methicillin-resistant Staphylococcus aureus (MRSA)
cells and the ability of the antibody-nanoparticle conjugate to selectively kill pathogens in
an animal model [243]. Goat anti-Escherichia coli O157:H7 antibodies were also successfully
conjugated on the surface of silver nanoparticles, which effectively bind to the target
pathogen [244]. An important aspect of the successful treatment of infections is the correct
identification of the pathogen. Hashemi et al. confirmed that with rabbit antibodies to
Candida and Gardnerella species, it is possible to correctly identify vaginal infections with
very high sensitivity and specificity [245].

Recent studies on the antimicrobial activity of metallic NPs functionalized with an-
tibiotics/fungicides or compounds other than antimicrobial agents are summarized in
Table 4.
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Table 4. Antimicrobial activity of metallic nanoparticles functionalized with antibiotics/fungicides or compounds other than antimicrobial agents. Abbrevi-
ations: STR, streptomycin; AMP, ampicillin; Au NFs, gold nanoflowers; CIP, ciprofloxacin; IMI, imipenem; GNRs, gold nanorods; FLU, fluconazole; CAS,
caspofungin; Fe2O3, iron(III) oxide; AMB, amphotericin B; NYS, nystatin; ZrO2, zirconium dioxide; GA, glutamic acid; CuO, copper(II) oxide; GLYMO, (3-
glycidyloxypropyl)trimethoxysilane; 4-HPBA, 4-hydroxyphenylboronic acid; CH, chitosan; PVP, polyvinylpyrrolidone; MPA, 2-mercaptopropanoic acid; CHX,
chlorhexidine; Fe3O4 NPs@NH2, aminosilane-functionalized iron(II,III) oxide nanoparticles.

NPs Size (nm) Synthesis Pathogens Mechanism of Action Reference

Ag NPs@STR ~31–119 green synthesis Escherichia coli, Staphylococcus
aureus

The interaction between NPs and
microorganism’s cell wall [218]

Au NPs@AMP 25–50 chemical reduction
Escherichia coli, Bacillus

subtilis, Staphylococcus aureus,
Flavobacterium devorans

The interaction between positively
charged nanoparticles and negatively
charged bacterial cell, disruption of

bacterial membrane integrity, enhanced
entry of antibiotic, inhibition of the

bacterial proliferation

[236]

Au NFs@ CIP No data adsorption method
Bacillus subtilis, Staphylococcus

aureus, Escherichia coli,
Pseudomonas aeruginosa

The interaction between nanoparticles and
bacterial cell wall, release of the carried

drugs
[223]

Ag NPs@IMI ~63–65 co-reduction method Pseudomonas spp.

The assembly on the bacterial surface,
reduction of the expression of Verona
imipenemase (VIM) and Imipenemase

(IMP) genes involved in resistance,
changes in morphology: chromatin

condensation and fragmented nuclei

[246]
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Table 4. Cont.

NPs Size (nm) Synthesis Pathogens Mechanism of Action Reference

GNRs @FLU 72–75 chemical reduction Candida albicans

Conjugating fluconazole with AuR NPs
enhanced the delivery efficiency of

fluconazole to the cell wall of the fungal
cells and accelerated their cellular uptake

[247]

Au NPs@CAS 30–50 chemical reduction Candida spp. The membrane damage as well as cell wall
and cell death [248]

Fe2O3 NPs@AMB,
Fe2O3 NPs@NYS

12–16 nm (Fe2O3
NPs@amphotericin B), 13–17

nm (Fe2O3 NPs@nystatin)

co-precipitation (Massart
method) Candida spp. Membrane disruption, induction of

oxidative stress [239]

ZrO2 NPs@GA ~2.5 solvothermal method

Rhodotorula mucilaginosa,
Rothia dentocariosa,

Streptococcus mitis, and
Streptococcus mutans

The interaction between nanoparticles and
pathogen cell wall or cellular constituents [249]

CuO NPs@ GLYMO/4-HPBA 117–125 precipitation method Escherichia coli, Rhodococcus
rhodochrous

The ROS generation, leading to
peroxidation of lipids from the bacterial
cell membrane, interaction ROS with the
cell organelles, electrostatic interaction

between nanoparticles and bacterial cell
wall, release of free Cu2+ ions

[250]

Ag NPs@CH 13–42 green synthesis
Staphylococcus aureus,

Pseudomonas aeruginosa,
Candida albicans

The electrostatic interaction between
nanoparticles and bacterial cell wall

leading to the leakage of the intracellular
components, penetration the cell wall of

the fungus and interaction with
sulfur-containing membrane proteins and
phosphorus-containing DNA nitrogenous

bases

[251]
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Table 4. Cont.

NPs Size (nm) Synthesis Pathogens Mechanism of Action Reference

AgNPs@PVP 6–10 chemical reduction Acinetobacter baumannii The ROS generation, changing the
expression level of proteins [252]

Au NPs@ MPA-cationic
dipeptide 10–14 chemical reduction

(Turkevich method)

Escherichia coli, Staphylococcus
aureus, Candida albicans,

Candida glabrata
The disruption of the cell wall [253]

Fe2O3 NPs@CHX 10–14 co-precipitation (Massart
method)

Staphylococcus aureus,
Enterococcus faecalis,

Escherichia coli, Pseudomonas
aeruginosa, Candida spp.

Depolarization of mitochondria, induction
of oxidative stress and oxidation of

pathogen structures
[147]

Fe3O4 NPs @Au, Fe3O4 NPs
@NH2

10 (Fe3O4 @Au), 13 (Fe3O4
@NH2)

co-precipitation (Massart
method) Pseudomonas aeruginosa

Attach to the bacterial membrane and loss
of its integrity, electrostatic interactions
with the bacterial cell wall resulting in

damage to the cell wall, increased
membrane permeability, perforation of the

plasma membrane, disruption of cell
metabolism

[134]
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3. Biocompatibility of Metallic Nanoparticles

An important aspect of the biomedical application of various types of nanoparticles is
biocompatibility, i.e., the property of a substance determining its correct functioning in a
living organism, which should show a lack of toxicity, not affect the body’s immune system
and do not induce hemolysis. In order to ensure the effective and safe use of nanomaterials,
the interactions between the nanoparticle and the cells of the host must be considered, with
particular attention being paid to the environment in which the test compounds act. A great
number of information/trends regarding the toxicity of nanoparticles are obtained in cancer
research and in studies that are not focused on antimicrobial activity. On the basis of such
studies, certain effects can be expected, even their possible therapeutic potential [254,255].
The toxicity of nanoparticles is highly affected by their physical and chemical properties,
such as shape, size, surface area and charge or catalytic activity [256].

Therefore, different methods are used to assess the biocompatibility of nanoparti-
cles, ranging from quantitative assays using conversion of compounds such as 3-(4, 5-
dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) [257], 2, 3-bis-(2-methoxy-4-
nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) [258] or lactate dehydrogenase
(LDH) [257], through qualitative studies (live and/or dead cell staining assays using dyes
such as calcein-AM with propidium iodide [259] and dual acridine orange/ethidium bro-
mide staining [260]) and finally blood hemolysis assays [261] and animal model [262] to
assess biocompatibility.

A very important factor associated with the toxic properties of metallic nanoparticles
is their size. Due to their small size, NPs have a much larger surface area per unit mass
compared to their bulk counterparts, which translates into higher reactivity, which is
associated with a higher risk of cytotoxic effects. As their size decreases, the number
of metal atoms per surface area increases exponentially, resulting in higher reactivity of
nanoparticles in biological systems [263]. Due to their small size, many nanoparticles are
able to bypass or cross the blood-brain barrier where they can reach and accumulate in
the brain parenchyma, including the striatum and hippocampus [264]. Depending on
the size of the nanoparticles, a differentiated subcellular distribution is observed in the
accumulated organs. In a study provided by Lopez-Chaves et al. gold nanoparticles with
three sizes of 10 nm, 30 nm, 60 nm were observed to accumulate. Au NPs of 10 nm in size
gathered within the cell nucleus, while particles larger than 10 nm in the cytoplasm [265].
Xia et al. determined the effect of cytotoxicity of gold nanoparticles depending on their
size (5, 20 and 50 nm) against HepG2 cancer cells and healthy L02 cells, where Au NPs
of 5 nm size showed higher cytotoxicity than those of 20 and 50 nm size. In contrast, in
mouse in vivo studies, 50 nm Au NPs showed the longest circulation in the blood and
the highest distribution in the liver and spleen, while 5 nm Au NPs caused an increase in
neutrophil counts and little hepatotoxicity in a mice [266]. In addition, the size of metallic
NPs may determine the aggregation process. Results presented by Wozniak et al. showed
that 4–28 nm Au nanospheres aggregate at high concentrations and long incubation times
increasing cytotoxicity in contrast to larger 130 nm star-shaped Au nanoparticles, which
are rather monodisperse and non-toxic [267].

With the help of changing the shape of nanoparticles, it is possible to modulate their
cytotoxicity. Nanoparticles can have different shapes and geometries including spheres,
ellipsoids, cylinders, stars, octahedral sheets, cubes, spikes, rods, triangles, prisms, which
significantly affects their toxicity. The star-shaped AuNPs had the highest anticancer
potential but also exhibited the highest cytotoxicity, while the spheres of AuNPs, which
were the least cytotoxic, showed weak anticancer activity [268]. Lee et al. synthesized
chitosan-coated gold nanoparticles in the shape of nanospheres, nanostars and nanowires
and determined the effect of their shape on cytotoxicity against human hepatocyte cancer
cells (HepG2). Cytotoxicity was highest for Au NPs in the shape of nanorods, followed by
nanostars and lowest for nanospheres [269]. Whereas Wozniak et al. performed the synthe-
sis of Au NPs with different shapes: spherical (~10 nm), nanorods (~41 nm), nanoprisms
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(~160 nm), nanostars (~240 nm) and nanoflowers (~370 nm) against cancer cells—HeLa
and normal cells—HEK293T. The obtained results indicated that spherical and rod-shaped
Au NPs were found to be more toxic than star-, flower- and prism-shaped Au NPs, which
the authors suggest may be due to the aggregation process and their small size. The
above results indicate that the selection of the appropriate shape for the synthesis of metal-
lic nanoparticles affects their cytotoxic activity [267]. Our results provided information
that ceragenin-functionalized gold nanoparticles (CSA-13, CSA-44 and CSA-131) with the
peanut-shape induce the greatest hemolysis compared with rod- and star- shaped [117,142],
while non-functionalized gold nanoparticles in rod-shaped induced slightly greater hemol-
ysis compared to peanut-shaped Au NPs.

The toxicity of nanoparticles may also depend on their chemical composition. The
degradation of nanoparticles that can occur depends on environmental conditions, such as a
change in pH, ionic strength, or ionic valence, resulting in the leakage of metal ions from the
core of metallic nanoparticles [270]. The resultant release of metal ions, such as silver, cobalt,
chromium, or nickel, is toxic to cells and causes cell damage, whereas the release of metal
ions from the nanoparticles alters the bioactivity and thus the toxic effect of the nanoparticle-
metal ion complex [271]. Free ions can cause, among other things, oxidative stress with the
release of cytokines [272]. In turn, other metal ions such as iron or zinc, which are the main
micronutrients necessary for the proper functioning of the body, however, as a result of
exceeding a certain concentration can adversely affect the functioning of cells by negatively
affecting cellular pathways and thus cause high toxicity. The toxic effect of released metal
ions can be reduced by using, among other things, appropriate surface modifications,
thanks to which their properties can be improved and such system can be stabilized by
preventing the release of ions from the interior, preventing oxidation of nanoparticle surface
and inhibiting aggregation and subsequent agglomeration of nanoparticles [273]. Results
obtained by Soenen et al. indicated that coating silver nanoparticles with a thin layer of
SiO2 minimized their toxicity as a result of blocking ion release and bacterial and/or cell
contact. In addition, the composition of the core can be changed by the addition of other
metals, thereby achieving increased chemical stability against degradation of the metallic
nanoparticles and consequently against unwanted leakage of metal ions into the body [274].

The surface charge of nanoparticles plays an important role in their toxicity, as it deter-
mines to a large extent the interaction of nanoparticles with biological systems [275]. The
relationship between high toxicity and positive charge on the surface of NPs is explained
by their ability to penetrate into cells resulting from electrostatic interactions between
negatively charged cell membrane glycoproteins and positively charged NPs, where in
the case of neutrally or negatively charged NPs such interactions are not observed [256].
The surface charge of metallic nanoparticles can be modified by non-covalent modification
of the nanoparticle surface by coating or wrapping with biological molecules to make
more biocompatible NPs using polymers, peptides, proteins, or surfactants. The second
way to modify the surface charge are covalent modifications involving the formation of
chemical bonds between functional groups present on the nanoparticle surface and other
biological molecules attached to that surface such as polyethylene glycol, peptides, or carbo-
hydrates [276]. Chen et al. performed the synthesis of copper oxide nanoparticles modified
with the polymers polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), polydopamine
(PDA) and polyvinyl alcohol (PVA) to determine the effect of surface modification of
nanoparticles on their antimicrobial activity against Escherichia coli. The positive surface
charge of CuO-PVP NPs enhanced antibacterial activity through electrostatic interactions
with negatively charged surfaces of Escherichia coli. The authors concluded that the posi-
tive surface charge of CuO-PVP NPs resulted in enhanced antibacterial activity through
electrostatic interactions with negatively charged Escherichia coli surfaces. It was also ob-
served that the weakly negatively charged CuO-PDA NPs achieved better antibacterial
activity, which the authors explain by the presence of lipophilic catecholamine structures
on the nanoparticle surfaces, which enabled interaction with the lipid bilayer in the outer
membrane of Escherichia coli [277]. In addition, Abbasadegan et al. synthesized silver



Int. J. Mol. Sci. 2023, 24, 2104 29 of 44

nanoparticles, obtaining three different electrical surface charges: positive, neutral and neg-
ative and determined the antibacterial activity of the nanoparticles. The authors concluded
that the surface charge of Ag NPs was a significant factor affecting the bactericidal activity,
where positively charged nanoparticles showed the highest bactericidal activity against
both Gram-positive and Gram-negative bacteria, negatively charged nanoparticles showed
the least antibacterial activity and neutral nanoparticles had intermediate activity [56].

The biocompatibility of metallic nanoparticles is also influenced by the method of
synthesis and its conditions. Using the MTT assay, Amooaghaie et al. determined the
toxicity of silver nanoparticles synthesized by two methods: green synthesis using Nigella
sativa extract and chemical synthesis against bone-building stem cells of mice. The toxicity
of the green synthesized Ag NPs was significantly lower than that of the chemical syn-
thesized Ag NPs after 24, 48 and 72 h. After 72 h exposure of cells to the test compounds
at a concentration of 0.2 mg/L, more than an 11-fold decrease in the number of viable
cells was observed for chemically synthesized Ag NPs compared to Ag NPs synthesized
by the green synthesis method [278]. Ghetas et al. determined the toxicity of chemically
and biologically synthesized silver nanoparticles by means of a hemolysis assay using on
chicken and goat red blood cells. The results indicate that chemically synthesized Ag NPs
are in most cases more hemolytic than biologically synthesized Ag NPs [149]. Similarly, in
the case of FeO NPs, the nanoparticles obtained by green synthesis are more biocompatible
than the counterpart synthesized by the chemical method [279]. Slightly different results
were obtained by Kummara et al. where, following exposure of non-small cell lung cancer
cells (NCI-H460) and normal human skin fibroblast cells (HDFa) to silver nanoparticles
by green synthesis and chemical methods, these biosynthesized Ag NPs were found to
be more toxic than chemically synthesized Ag NPs. Both lower cell viability and greater
inhibition of the cell proliferation were observed when exposed to green synthesized Ag
NPs [280].

4. Metallic Nanoparticles—Development of Microbial Resistance and Their Impact on
the Host Microbiome

Due to the rapid spread of resistance among microorganisms [281], a very important
aspect of the potential use of metallic nanoparticles is whether pathogens can become resis-
tant to them, and how quickly. Due to the different mechanisms of action of nanoparticles,
pathogens do not easily acquire resistance with regard to the need to develop multiple
mutations [52,99]. There are reports that metallic nanoparticles do not induce the devel-
opment of resistance. Xie et al. synthesized quaternary gold nanoclusters coated with
quaternary ammonium and did not observe an increase in the MIC for Staphylococcus
aureus after 30 days of exposure [58]. Zheng et al. also observed no change in MIC val-
ues after 30 days of passaging Staphylococcus aureus with cercaptopyrimidine-conjugated
gold nanoclusters. The results of our induction of resistance in Candida strains exposed to
ceragenin-functionalized gold nanoparticles over 25 passages also confirmed the low poten-
tial for resistance development among fungi [142]. On the other hand, another published
study investigated whether microorganisms may develop defense strategies to cope with
the antimicrobial effects of metallic nanoparticles. Adaptive defense mechanisms include
reduced uptake/adsorption of metallic NPs, where an important role is played by porins
involved in the transport of ions through outer membranes to the periplasmic space, from
which they undergo specific transport across the cytoplasmic membrane to the cell interior.
As a result of the down-regulation of porins, it is possible to reduce the destructive effect of
metal ions and, thus, pathogens become less susceptible to metallic nanoparticles [282,283].
Another defense mechanism is the increased pumping of metal ions to the interior of
the cell. Thus, the exposure of pathogens to metallic nanoparticles might results in the
upregulation of genes encoding efflux pumps [282,284]. It should be noted that due to
the upregulation of genes encoding a wide variety of efflux systems, it is also possible to
remove antibiotics from inside of the cell as well, and therefore develop resistance not only
to metallic nanoparticles but also to other antimicrobial agents. The enhanced detoxification
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of reactive oxygen species is also one mechanism. As a consequence of the exposure of
pathogens to metallic nanoparticles, an increase in the expression of genes encoding ROS
scavenging systems has been noted [285,286]. Furthermore, as a result of biofilm formation,
a physical barrier is formed which impedes the penetration of metallic nanoparticles so
that pathogen cells are exposed to lower doses of nanoparticles and are able to become
resistant to the acting agent [287]. In respect of the influence of sublethal doses on the
bacterial biofilm, Ouyang et al. [288] and Yang et al. [289] concluded not only the induction
of quorum sensing gene expression and LPS (lipopolysaccharide) biosynthesis, but also
the release of signaling molecules by Pseudomonas putida and Pseudomonas aeruginosa PAO1,
respectively.

Another important aspect of metallic nanoparticles including, Ag NPs, TiO2 NPs
and ZnO NPs, is that they potentially interfere with the intestinal microbiome that can
compromise the host health [290,291]. At the beginning, it should be mentioned that NPs
may affect a complex of gastrointestinal (GI) environment. The non-absorbed fractions of
NPs accumulate in the intestine and can indirectly affect the intestinal microbiota occurring
within the gut lumen, as well as the mucus layer lining the epithelial surface. Subsequently,
a portion of the NPs may translocate via the epithelial barrier and can be potentially cap-
tured by the intestinal immune cells (e.g., macrophages and dendritic cells) until reaching
systemic circulation [290]. It should be explicitly underlined that intestinal microbiota plays
a crucial role in numerous physiological functions as an indispensable element for host
health. Apart from their contribution in the digestion of dietary fiber or the production
of essential metabolites for the host, gut microbiota also participates in the maintenance
of structural integrity of the mucosal barrier, the control of the immune response, and
the protection against pathogens [290,292]. The intestinal microbiota consist of trillions of
microorganisms comprising bacteria, viruses, fungi, archaea and protozoa [290,291,293]. It
is estimated that in adults, the gastrointestinal tract (GIT) tract harbors 100 trillion bacteria,
involving a minimum of several hundred species and more than 7000 strains [290]. Notably,
80% of fecal microbiota in a healthy adult representing the three dominant phyla i.e., Bac-
teroidetes, Firmicutes, and Actinobacteria [290,291]. Whereas other species are classified
to the phyla Proteobacteria, Verrucomicrobia, Fusobacteria and Cyanobacteria [290]. A
summary of the findings of research evaluating the impact of NPs on the intestinal flora is
presented in Table 5.

Table 5. The influence of NPs such as Ag, TiO2 and ZnO on the intestinal microbiota. Abbreviations:
Ag, silver; TiO2, titanium dioxide; ZnO, zinc oxide; F/B, Firmicutes/Bacteroidetes: ↑, increased
bacteria; ↓ decreased bacteria.

NPs Effect Reference

Ag

↓ Firmicutes
↑ Bacteroidetes
↓ Lactobacillus
↑ Bifidobacterium

[291,294]

↑ F/B ratio with dose
↑ Coprococcus
↑ Lactobacillus
↑ Blautia
↓ Bacteroides
↓Mucispirillum

[291,295]

↓ F/B ratio
↑ Alistipes
↑ Bacteroides
↑ Prevotella
↓ Lactobacillus

[291,296]
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Table 5. Cont.

NPs Effect Reference

↓ Bacteroidetes i.e., Bacteroides ovatus
↓ Eubacterium rectale

↓ Faecalibacterium prausnitzii
↓ Roseburia faecalis and Roseburia intestinalis

↓ Ruminococcus torques
↑ Escherichia col

i↑ Raoultella (sp.)

[290,297]

TiO2

↓ Bacteroides ovatus
↑ Clostridium cocleatum [291,298]

No considerable effect on gut microbiota. Microbial composition and
GIT histology remained

unchanged.
[291,296]

↑ Lactobacillus reuteri
↓ Romboutsia [291,299]

↓ Bacteroides ovatus
↑ Acidaminococcus intestini
↑ Clostridium cocleatum

↑ Eubacterium rectale and Eubacterium ventriosum

[290,298]

ZnO

↑ Streptococcus
↓ Lactobacillus Ileum

[290,291,300]↑ Lactobacillus
↓ Oscillospira
↓ Prevotella

Colon

↓ Firmicutes
↓ Lactobacillus
↑ Bacteroidetes
↑ Fusobacteria
↑ Bacilli

[291,301]

Considering all data, it should be highlighted that Ag NPs, TiO2 NPs and ZnO NPs
may affect the intestinal microbiota including the alteration of the F/B ratio (for example,
an enhanced F/B ratio is related with obesity), a depletion of Lactobacillus strains and an
elevated in the abundance of Proteobacteria. The above consequences can lead to obesity
or even CRC (colorectal cancer) where gut dysbiosis play a significant role [290]. What is
more, dysbiosis as a result of the action of the mentioned NPS may be associated with the
development of inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and
metabolic syndrome [290–292]. With regard to the above insights, additional investigations
are needed for a better understanding of the changes among intestinal microbiota in the
presence of Ag NPs, TiO2 NPs and ZnO NPs.

5. Conclusions and Future Perspectives

In an era of increasing antimicrobial resistance, metallic nanoparticles appear to hold
promise to improve current therapies and to develop new therapeutic agents of nanoscale
nature. A possible way to increase the antimicrobial activity of conventional antibiotics
is to use them in combination with metallic nanoparticles. This can be done either by
synthesizing metallic nanoparticles with a modified surface, functionalization with suitable
antimicrobial agents, or by designing a core of synergistically acting metals. It is also
possible to select antimicrobial agents and use them in combination therapy (metallic
nanoparticles + antimicrobial agents). The use of synergism in the nanotechnology context
seems to be a very promising approach in the fight against various infections, whether of
bacterial or fungal etiology, and against planktonic and biofilm-forming bacteria. Thus,
the synergistic combination of metallic NPs with suitable compounds may be a potential
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source of alternative antimicrobial agents and may play a significant role in the near future.
Combining metallic nanoparticles with an antimicrobial agent not only demonstrated
synergistic effects, but also improved drug delivery and increased antimicrobial agent
efficacy, while reducing the side effects associated with the broad use of these agents.
In addition, the synergistic action of metallic nanoparticles with an antimicrobial agent
enabled resistance mechanisms to conventional antibiotics/fungicides, thereby providing a
more effective use of antibiotics/fungicides available in the clinical practice.

In addition, the activity as well as the toxicity of metallic nanoparticles is influenced
by their physical and chemical properties, where the size of nanoparticles has been found
to have a significant effect due to the increase in specific surface area at nanoscale sizes,
resulting in a higher number of cellular interactions and, consequently, toxicity. Other
key factors influencing nanoparticle cytotoxicity include shape, surface charge, method of
synthesis, nanoparticle surface modification and metal ion release. Therefore, the control
of the physicochemical properties of NPs is crucial in order to obtain safer and more
stable NPs. An important aspect of the use of nanotechnologies is the biocompatibility of
the design materials. Although metallic nanoparticles in combination with antimicrobial
agents have many advantages, they can also have adverse effects, as they have the potential
to cross the natural barriers of living cells and tissues, causing toxic and inflammatory
responses. The biocompatibility of metallic nanoparticles can be modulated by changing
the size of the nanoparticles. It has been found that due to their small size, NPs have a much
larger surface area per unit mass compared to their bulk counterparts, resulting in a greater
reactivity with a greater risk of cytotoxic effects. By changing factors such as shape, chemical
composition, surface charge, and method of synthesis, the biocompatibility of metallic
NPs can be influenced. Therefore, it is believed that by controlling the physicochemical
properties of nanoparticles, safer and more reliable nanoparticles with high antimicrobial
activity can be obtained. Further research is still required to determine how nanoparticles
affect the complex human body. In order to reduce the toxic effects of metallic nanoparticles,
as well as in combination with other compounds, new methods are needed to reduce the
negative effects of NPs while maintaining their activity. Much of the work to date confirms
the low potential of metallic nanoparticles due to their divergent mechanisms of action
against pathogens. However, there are also reports of the possibility of the development
of resistance mechanisms as a result of exposure to nanoparticles, so a highly effective
antimicrobial agent such as metallic NPs should be handled rationally to remain effective
against various types of infections. Currently, the impact of NPs on intestinal microbiota
has caught the increasing attention of researchers. It should be emphasized that there is a
compelling amount of evidence indicating the correlation of Ag NPs, TiO2 NPs and ZnO
NPs in the development of obesity, IBD, IBS metabolic syndrome or even CRC. Nevertheless,
the above mentioned findings raise the need for extended investigation in order to fully
explain them, especially in humans.

For the safe use of metallic nanoparticles there is a need for future research, which
should include the mechanisms of NPs’ translocation, accumulation, long-term and long-
lasting effects on the body, their interaction with cells, signaling pathways and receptors,
and effects on fundamental processes such as phagocytosis. Understanding the relationship
of potentially new nanotechnology-based antimicrobials to biological systems is a key
to overcoming the limitations and toxicity barriers of metallic nanoparticles and to their
future use in the treatment of bacterial or fungal infections. Although the results presented
in this review are promising in the context of fighting infections by combining metallic
nanoparticles with antimicrobial agents, at present, no existing product has been approved
by the Food and Drug Administration (FDA) for clinical use. Therefore, future research
should focus on the elucidation of the interaction of nanotechnology-based antimicrobials
with cells, tissues or organs, their metabolism and accumulation in the body, and their effect
on the natural flora in order to produce safe and effective means of combating microbial
resistance in the next generation of drugs.
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