VII. STRESZCZENIE

Komórki neuroendokrynowe pełnią wyjątkowo ważną rolę w utrzymaniu homeostazy organizmu, produkując hormony i biologicznie aktywne substancje biorące udział w procesach metabolicznych ustrój. Badania eksperymentalne dowodzą, że w patogenezie wielu chorób, w tym również nadciśnienia tętniczego bardzo ważną rolę odgrywają neuropeptydy wydzielane przez komórki neuroendokrynowe zlokalizowane w wielu narządach czy układach i należące do rozproszonego systemu komórek DNES.

Nadciśnienie tętnicze to złożony zespół chorobowy, którego stałym elementem jest podwyższone ciśnienie krwi, za które mogą odpowiadać ściśle powiązane ze sobą zaburzenia neuroendokrynowe, metaboliczne oraz zmiany strukturalne i czynnościowe w układzie krążenia i nerkach. Nadciśnienie tętnicze skutkuje niedokrwieniem tkanek i niewydolnością narządową m.in. płuc.

Płucne komórki neuroendokrynowe poprzez produkcję czynników naczyniokurczących jak i naczyniorozszerzających mają ogromny wpływ na przebieg nadciśnienia tętniczego. System komórek neuroendokrynowych w płucach jest reprezentowany przez komórki występujące samotnie, jak również przez wielkokomórkowe skupiska zwane ciałkami neuroepiteliałnymi. PNEC biorą udział w wielu procesach metabolicznych zarówno w fizjologii jak i patologii.

Z doniesień literaturowych wynika, że PNEC produkują substancje mające znaczącą rolę w inicjacji i rozwoju nadciśnienia, działając na drodze endo-, para- czy autokrynej pełnią funkcję ochronną w stosunku do komórek śródbłonka naczyniowego, jak również komórek mięśni gładkich.
Celem niniejszej pracy jest ocena morfologii i immunoreaktywności wybranych typów komórek neuroendokrynowych w płucach szczerów z nadciśnieniem naczyniowo-nerkowym.

Badania przeprowadzono 18 samcach szczerzych rasy Wistar. Zwierzęta podzielono na dwie grupy kontrolne: (K) 5 szczerów nie poddany żadnym zabiegiem, (PO) 5 zwierząt poddanych pozornemu zabiegowi zaciśnięcia tętnicy nerkowej oraz grupę badaną (2K1C), którą stanowiło 8 szczerów z indukowanym nadciśnieniem naczyniowo-nerkowym poprzez założenie wystandardyzowanego zacisku (0,22 mm) na tętnicę doprowadzającą krew do lewej nerki. Po 42 dniach trwania doświadczenia zwierzęta usypiano, pobierano płuca wraz z tchawicą i utrwalono perfuzjnie płynem Bouin'a. Po 72 godzinach od każdego zwierzęcia pobrano ten sam fragment płuca i przeprowadzono do kostek parafinowych w rutynowy sposób.

Do ogólnej oceny histologicznej skrawki zabarwiono H+E. W celu identyfikacji PNEC wykonano reakcje immunohistochemiczne z zastosowaniem przeciwko NSE, SY i CGRP. Wyniki barwień oceniono w mikroskopie świetlnym połączonym z komputerem z zainstalowanym programem morfometrycznym NIS-Elements Advanced Research firmy NIKON. Zwracano uwagę na rozmieszczenie komórek wykazujących pozytywny odczyn immunohistochemiczny.

Wyniki dotyczące liczby komórek immunopozytywnych wytwarzających NSE, SY i CGRP w 1 mm² płuca oraz intensywność reakcji immunohistochemicznej zostały poddane analizie statystycznej, gdzie wyliczono średnią (\(\bar{x}\)) oraz błąd standardowy (SE). Analizę porównawczą wykonano za pomocą parametrycznego testu t-Studenta przy użyciu pakietu statystycznego STATISTICA 12.5 PL. Za poziom istotności statystycznej przyjęto wartość p=0,05.
Analiza morfometryczna PNEC u zwierząt z nadciśnieniem i w grupie kontrolnej wykazała różnice w liczbie i immunoreaktywności komórek NE. Badania morfometryczne wykazały 3-krotnie większą ogólną liczbę komórek NE w płucach szczurów z nadciśnieniem naczyniowo-nerkowym w porównaniu do zwierząt normotensyjnych (grupa kontrolna (PO) 0,57±0,085; grupa badana (2K1C) 1,70±0,276 (X ±SE; p=0,000149).

W badaniach densymetrycznych wykazano znamieny statystycznie wzrost intensywności reakcji immunohistochemicznej we wszystkich badanych komórkach NE płuc zwierząt grupy badanej w porównaniu do szczurów normotensyjnych.

Wyniki przeprowadzonych badań wskazują, że w nadciśnieniu tętniczym dochodzi do zakłóceń aktywności komórek neuroendokrynowych w płucach. Zmiany jakościowe i ilościowe komórek PNEC w nadciśnieniu naczyniowo-nerkowym, mogą mieć związek z reakcją komórek na rozregulowanie wewnątrznarządowej homeostazy, bądź procesem adaptacyjno-kompensacyjnym, mającym na celu ograniczenie powikłań ze strony układu oddechowego.